13 research outputs found
Ants (Hymenoptera, Formicidae) of APA Pandeiros: A Perspective from a Decade of Research in an Environmental Protection Area in the Cerrado-Caatinga Transition
Habitat transformation and species loss bring enormous environmental damage, whereas establishing protected areas promotes more sustainable use of environmental resources through biodiversity conservation. In this study, we aimed to point out gaps in ant knowledge and provide a species checklist that contributes to biodiversity conservation in the transition areas between Cerrado and Caatinga biomes, constantly threatened by land use changes. This checklist integrates data from previous studies developed at “Área de Proteção Ambiental do Rio Pandeiros” (APA Pandeiros), Minas Gerais, Brazil, involving ant diversity and their contribution to ecological processes accessed and described in the studies. We showed and discussed how authors managed and provided information regarding methodologies and habitats sampled. We listed 143 ant species formally named. Pheidole, Camponotus and Cephalotes were the most speciose genera, with more than ten species each. Among ants involved in ecological processes, 40 are linked to diaspore removal (part of seed dispersal) and 30 to carcass interaction (part of the decomposition process). Unbaited pitfall traps, epigeic stratum and Cerrado sensu stricto, were the top sampling method, stratum, and habitats among ant studies. We presented proposals for the best management and integration of data from surveys in APA Pandeiros (e.g., sharing the results of the studies with the APA managers, creating a database, and the local community). These surveys are fundamental for understanding biodiversity and ecological processes and provide valuable information to conservation biology. Therefore, neglecting the importance of the Cerrado-Caatinga transition can lead to irreparable setbacks for scientific knowledge and biodiversity
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Occurrence of Pheidole tijucana Borgmeier, 1927 (Hymenoptera, Formicidae) in the state of São Paulo, Brazil
Pheidole Westwood, 1839 is a hyperdiverse ant genus that is widely distributed in a variety of terrestrial ecosystems, especially in the tropics. The identification of Pheidole species is challenging, thus contributing to the description of several questionable morphospecies in the literature and making the geographic distribution of most species uncertain. In this work, we present the first records of Pheidole tijucana Borgmeier, 1927 from the state of São Paulo, Brazil. The specimens were recorded at Parque Ibirapuera Conservação, an urban green area located in the southern part of the city of São Paulo. The sampling was performed in 2015, 2016, and 2017 using pitfall traps. In total, 224 specimens (one major worker and 223 minor workers) of P. tijucana were recorded. Our new data help fill a distribution gap and highlights the importance of reporting species that are a challenge to identify
Núcleos de Ensino da Unesp: artigos 2011: volume 2: metodologias de ensino e a apropriação de conhecimento pelos alunos
Pró-Reitoria de Graduação (PROGRAD UNESP
NEOTROPICAL FRESHWATER FISHES: A dataset of occurrence and abundance of freshwater fishes in the Neotropics
The Neotropical region hosts 4225 freshwater fish species, ranking first among the world's most diverse regions for freshwater fishes. Our NEOTROPICAL FRESHWATER FISHES data set is the first to produce a large-scale Neotropical freshwater fish inventory, covering the entire Neotropical region from Mexico and the Caribbean in the north to the southern limits in Argentina, Paraguay, Chile, and Uruguay. We compiled 185,787 distribution records, with unique georeferenced coordinates, for the 4225 species, represented by occurrence and abundance data. The number of species for the most numerous orders are as follows: Characiformes (1289), Siluriformes (1384), Cichliformes (354), Cyprinodontiformes (245), and Gymnotiformes (135). The most recorded species was the characid Astyanax fasciatus (4696 records). We registered 116,802 distribution records for native species, compared to 1802 distribution records for nonnative species. The main aim of the NEOTROPICAL FRESHWATER FISHES data set was to make these occurrence and abundance data accessible for international researchers to develop ecological and macroecological studies, from local to regional scales, with focal fish species, families, or orders. We anticipate that the NEOTROPICAL FRESHWATER FISHES data set will be valuable for studies on a wide range of ecological processes, such as trophic cascades, fishery pressure, the effects of habitat loss and fragmentation, and the impacts of species invasion and climate change. There are no copyright restrictions on the data, and please cite this data paper when using the data in publications
Neotropical freshwater fisheries : A dataset of occurrence and abundance of freshwater fishes in the Neotropics
The Neotropical region hosts 4225 freshwater fish species, ranking first among the world's most diverse regions for freshwater fishes. Our NEOTROPICAL FRESHWATER FISHES data set is the first to produce a large-scale Neotropical freshwater fish inventory, covering the entire Neotropical region from Mexico and the Caribbean in the north to the southern limits in Argentina, Paraguay, Chile, and Uruguay. We compiled 185,787 distribution records, with unique georeferenced coordinates, for the 4225 species, represented by occurrence and abundance data. The number of species for the most numerous orders are as follows: Characiformes (1289), Siluriformes (1384), Cichliformes (354), Cyprinodontiformes (245), and Gymnotiformes (135). The most recorded species was the characid Astyanax fasciatus (4696 records). We registered 116,802 distribution records for native species, compared to 1802 distribution records for nonnative species. The main aim of the NEOTROPICAL FRESHWATER FISHES data set was to make these occurrence and abundance data accessible for international researchers to develop ecological and macroecological studies, from local to regional scales, with focal fish species, families, or orders. We anticipate that the NEOTROPICAL FRESHWATER FISHES data set will be valuable for studies on a wide range of ecological processes, such as trophic cascades, fishery pressure, the effects of habitat loss and fragmentation, and the impacts of species invasion and climate change. There are no copyright restrictions on the data, and please cite this data paper when using the data in publications
NEOTROPICAL FRESHWATER FISHES: A dataset of occurrence and abundance of freshwater fishes in the Neotropics
The Neotropical region hosts 4225 freshwater fish species, ranking first among the world's most diverse regions for freshwater fishes. Our NEOTROPICAL FRESHWATER FISHES data set is the first to produce a large-scale Neotropical freshwater fish inventory, covering the entire Neotropical region from Mexico and the Caribbean in the north to the southern limits in Argentina, Paraguay, Chile, and Uruguay. We compiled 185,787 distribution records, with unique georeferenced coordinates, for the 4225 species, represented by occurrence and abundance data. The number of species for the most numerous orders are as follows: Characiformes (1289), Siluriformes (1384), Cichliformes (354), Cyprinodontiformes (245), and Gymnotiformes (135). The most recorded species was the characid Astyanax fasciatus (4696 records). We registered 116,802 distribution records for native species, compared to 1802 distribution records for nonnative species. The main aim of the NEOTROPICAL FRESHWATER FISHES data set was to make these occurrence and abundance data accessible for international researchers to develop ecological and macroecological studies, from local to regional scales, with focal fish species, families, or orders. We anticipate that the NEOTROPICAL FRESHWATER FISHES data set will be valuable for studies on a wide range of ecological processes, such as trophic cascades, fishery pressure, the effects of habitat loss and fragmentation, and the impacts of species invasion and climate change. There are no copyright restrictions on the data, and please cite this data paper when using the data in publications