3 research outputs found

    Simulasi Energi dan Keekonomian Sistem Pembangkit Listrik Tenaga Surya (PLTS) untuk Fungsi Peak Load Shaving pada Bangunan di Lingkungan Kampus ITB

    Full text link
    Pada paper ini, dilakukan simulasi produksi energi dan keekonomian dari sistem PLTS terintegrasi dengan jaringan listrik yang merupakan bagian dari proyek instalasi sistem smart microgrid di bangunan Center for Advanced Sciences (CAS) ITB. Terdapat dua sistem PLTS yang dianalisis yaitu sistem PLTS 40 kWp tanpa baterai, dan sistem PLTS 10 kWp dengan baterai yang terhubung ke beban kritis. Kedua sistem PLTS tersebut dirancang dengan tujuan peak load shaving yang dapat meminimalisir adanya ketidakseimbangan antara produksi energi surya dan permintaan listrik. Kedua sistem dianalisis dengan metoda simulasi berdasarkan aspek energi dan ekonomi menggunakan perangkat lunak PVsyst dan Homer. Dari hasil simulasi sistem PLTS 40 kWp didapatkan nilai performance ratio (PR) sebesar 0,833, renewable fraction (RF) sebesar 18,73%, dan cost of energy (COE) sebesar Rp 1.251,85/kWh yang mana nilai PR dan COE telah memenuhi target bisnis: PR > 0.8 dan COE < Rp 1.467,28/kWh tetapi tidak memenuhi target RF > 35%. Sementara dari hasil simulasi sistem PLTS 10 kWp didapatkan nilai PR sebesar 0,77, RF sebesar 44,38% hingga 52,19% pada rentang depth of discharge 20% - 80%, dan COE sebesar Rp 2.103/kWh hingga Rp 6.315/kWh pada rentang DoD 20% - 80% yang mana hanya nilai RF telah memenuhi target bisnis

    Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

    No full text
    Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset
    corecore