2,414 research outputs found
Achievable rate region for three user discrete broadcast channel based on coset codes
We present an achievable rate region for the general three user discrete
memoryless broadcast channel, based on nested coset codes. We characterize
3-to-1 discrete broadcast channels, a class of broadcast channels for which the
best known coding technique\footnote{We henceforth refer to this as Marton's
coding for three user discrete broadcast channel.}, which is obtained by a
natural generalization of that proposed by Marton for the general two user
discrete broadcast channel, is strictly sub-optimal. In particular, we identify
a novel 3-to-1 discrete broadcast channel for which Marton's coding is
\textit{analytically} proved to be strictly suboptimal. We present achievable
rate regions for the general 3-to-1 discrete broadcast channels, based on
nested coset codes, that strictly enlarge Marton's rate region for the
aforementioned channel. We generalize this to present achievable rate region
for the general three user discrete broadcast channel. Combining together
Marton's coding and that proposed herein, we propose the best known coding
technique, for a general three user discrete broadcast channel.Comment: A non-additive 3-user discrete broadcast channel is identified for
which achievable rate region based on coset codes is analytically proven to
be strictly larger than that achievable using unstructured iid codes. This
version is submitted to IEEE Transactions on Information Theor
Computing sum of sources over an arbitrary multiple access channel
The problem of computing sum of sources over a multiple access channel (MAC)
is considered. Building on the technique of linear computation coding (LCC)
proposed by Nazer and Gastpar [2007], we employ the ensemble of nested coset
codes to derive a new set of sufficient conditions for computing the sum of
sources over an \textit{arbitrary} MAC. The optimality of nested coset codes
[Padakandla, Pradhan 2011] enables this technique outperform LCC even for
linear MAC with a structural match. Examples of nonadditive MAC for which the
technique proposed herein outperforms separation and systematic based
computation are also presented. Finally, this technique is enhanced by
incorporating separation based strategy, leading to a new set of sufficient
conditions for computing the sum over a MAC.Comment: Contains proof of the main theorem and a few minor corrections.
Contents of this article have been accepted for presentation at ISIT201
A Graph-based Framework for Transmission of Correlated Sources over Broadcast Channels
In this paper we consider the communication problem that involves
transmission of correlated sources over broadcast channels. We consider a
graph-based framework for this information transmission problem. The system
involves a source coding module and a channel coding module. In the source
coding module, the sources are efficiently mapped into a nearly semi-regular
bipartite graph, and in the channel coding module, the edges of this graph are
reliably transmitted over a broadcast channel. We consider nearly semi-regular
bipartite graphs as discrete interface between source coding and channel coding
in this multiterminal setting. We provide an information-theoretic
characterization of (1) the rate of exponential growth (as a function of the
number of channel uses) of the size of the bipartite graphs whose edges can be
reliably transmitted over a broadcast channel and (2) the rate of exponential
growth (as a function of the number of source samples) of the size of the
bipartite graphs which can reliably represent a pair of correlated sources to
be transmitted over a broadcast channel.Comment: 36 pages, 9 figure
An Achievable Rate Region for the Broadcast Channel with Feedback
A single-letter achievable rate region is proposed for the two-receiver
discrete memoryless broadcast channel with generalized feedback. The coding
strategy involves block-Markov superposition coding, using Marton's coding
scheme for the broadcast channel without feedback as the starting point. If the
message rates in the Marton scheme are too high to be decoded at the end of a
block, each receiver is left with a list of messages compatible with its
output. Resolution information is sent in the following block to enable each
receiver to resolve its list. The key observation is that the resolution
information of the first receiver is correlated with that of the second. This
correlated information is efficiently transmitted via joint source-channel
coding, using ideas similar to the Han-Costa coding scheme. Using the result,
we obtain an achievable rate region for the stochastically degraded AWGN
broadcast channel with noisy feedback from only one receiver. It is shown that
this region is strictly larger than the no-feedback capacity region.Comment: To appear in IEEE Transactions on Information Theory. Contains
example of AWGN Broadcast Channel with noisy feedbac
How to Compute Modulo Prime-Power Sums
The problem of computing modulo prime-power sums is investigated in
distributed source coding as well as computation over Multiple-Access Channel
(MAC). We build upon group codes and present a new class of codes called Quasi
Group Codes (QGC). A QGC is a subset of a group code. These codes are not
closed under the group addition. We investigate some properties of QGC's, and
provide a packing and a covering bound. Next, we use these bounds to derived
achievable rates for distributed source coding as well as computation over MAC.
We show that strict improvements over the previously known schemes can be
obtained using QGC's
- …