14,570 research outputs found

    String Cosmology in Anisotropic Bianchi-II Space-time

    Full text link
    The present study deals with a spatially homogeneous and anisotropic Bianchi-II cosmological model representing massive strings. The energy-momentum tensor, as formulated by Letelier (1983), has been used to construct a massive string cosmological model for which the expansion scalar is proportional to one of the components of shear tensor. The Einstein's field equations have been solved by applying a variation law for generalized Hubble's parameter that yields a constant value of deceleration parameter in Bianchi-II space-time. A comparative study of accelerating and decelerating modes of the evolution of universe has been carried out in the presence of string scenario. The study reveals that massive strings dominate the early Universe. The strings eventually disappear from the Universe for sufficiently large times, which is in agreement with the current astronomical observations.Comment: 11 pages, 6 figures (To appear in Mod. Phys. Lett. A) In this version, the cosmic string has been directed along z-direction and the resultant field equations have been solved exactl

    Bulk Viscous Cosmological Models in Barber's Second Self Creation Theory

    Get PDF
    Barber's second self creation theory with bulk viscous fluid source for an LRS Bianchi type-I metric is considered by using deceleration parameter to be constant where the metric potentials are taken as function of xx and tt. The coefficient of bulk viscosity is assumed to be a power function of the mass density. Some physical and geometrical features of the models are discussedComment: latex, 10 pages, submitted in Int. J. Mod. Phys.

    On the origin of generalized uncertainty principle from compactified M5-brane

    Full text link
    In this paper, we demonstrate that compactification in M-theory can lead to a deformation of field theory consistent with the generalized uncertainty principle (GUP).We observe that the matter fields in the M3-brane action contain higher derivative terms. We demonstrate that such terms can also be constructed from a reformulation of the field theory by the GUP. In fact, we will construct the Heisenberg algebra consistent with this deformation, and explicitly demonstrate it to be the Heisenberg algebra obtained from the GUP. Thus, we use compactification in M-theory to motivate for the existence of the GUP.Comment: 5 pages, accepted by Mod. Phys. Lett.

    Extinction transition in bacterial colonies under forced convection

    Full text link
    We report the spatio-temporal response of {\it Bacillus subtilis} growing on a nutrient-rich layer of agar to ultra-violet (UV) radiation. Below a crossover temperature, the bacteria are confined to regions that are shielded from UV radiation. A forced convection of the population is effected by rotating a UV radiation shield relative to the petri dish. The extinction speed at which the bacterial colony lags behind the shield is found to be qualitatively similar to the front velocity of the colony growing in the absence of the hostile environment as predicted by the model of Dahmen, Nelson and Shnerb. A quantitative comparison is not possible without considering the slow dynamics and the time-dependent interaction of the population with the hostile environment.Comment: 4 pages, 4 figures, further information at http://physics.clarku.edu/~akudrolli/nls.htm

    Studying the Variation of the Fine Structure Constant Using Emission Line Multiplets

    Full text link
    As an extension of the method by Bahcall et al. (2004) to investigate the time dependence of the fine structure constant, we describe an approach based on new observations of forbidden line multiplets from different ionic species. We obtain optical spectra of fine structure transitions in [Ne III], [Ne V], [O III], [OI], and [SII] multiplets from a sample of 14 Seyfert 1.5 galaxies in the low-z range 0.035 < z < 0.281. Each source and each multiplet is independently analyzed to ascertain possible errors. Averaging over our sample, we obtain a conservative value alpha^2(t)/\alpha^2(0) = 1.0030+-0.0014. However, our sample is limited in size and our fitting technique simplistic as we primarily intend to illustrate the scope and strengths of emission line studies of the time variation of the fine structure constant. The approach can be further extended and generalized to a "many-multiplet emission line method" analogous in principle to the corresponding method using absorption lines. With that aim, we note that the theoretical limits on emission line ratios of selected ions are precisely known, and provide well constrained selection criteria. We also discuss several other forbidden and allowed lines that may constitute the basis for a more rigorous study using high-resolution instruments on the next generation of 8 m class telescopes.Comment: 20 pages, 4 figures, sumbitted to A
    • …
    corecore