40 research outputs found
On the efficient representation and execution of deep acoustic models
In this paper we present a simple and computationally efficient quantization
scheme that enables us to reduce the resolution of the parameters of a neural
network from 32-bit floating point values to 8-bit integer values. The proposed
quantization scheme leads to significant memory savings and enables the use of
optimized hardware instructions for integer arithmetic, thus significantly
reducing the cost of inference. Finally, we propose a "quantization aware"
training process that applies the proposed scheme during network training and
find that it allows us to recover most of the loss in accuracy introduced by
quantization. We validate the proposed techniques by applying them to a long
short-term memory-based acoustic model on an open-ended large vocabulary speech
recognition task.Comment: Accepted conference paper: "The Annual Conference of the
International Speech Communication Association (Interspeech), 2016
On the Compression of Recurrent Neural Networks with an Application to LVCSR acoustic modeling for Embedded Speech Recognition
We study the problem of compressing recurrent neural networks (RNNs). In
particular, we focus on the compression of RNN acoustic models, which are
motivated by the goal of building compact and accurate speech recognition
systems which can be run efficiently on mobile devices. In this work, we
present a technique for general recurrent model compression that jointly
compresses both recurrent and non-recurrent inter-layer weight matrices. We
find that the proposed technique allows us to reduce the size of our Long
Short-Term Memory (LSTM) acoustic model to a third of its original size with
negligible loss in accuracy.Comment: Accepted in ICASSP 201
On the Choice of Modeling Unit for Sequence-to-Sequence Speech Recognition
In conventional speech recognition, phoneme-based models outperform
grapheme-based models for non-phonetic languages such as English. The
performance gap between the two typically reduces as the amount of training
data is increased. In this work, we examine the impact of the choice of
modeling unit for attention-based encoder-decoder models. We conduct
experiments on the LibriSpeech 100hr, 460hr, and 960hr tasks, using various
target units (phoneme, grapheme, and word-piece); across all tasks, we find
that grapheme or word-piece models consistently outperform phoneme-based
models, even though they are evaluated without a lexicon or an external
language model. We also investigate model complementarity: we find that we can
improve WERs by up to 9% relative by rescoring N-best lists generated from a
strong word-piece based baseline with either the phoneme or the grapheme model.
Rescoring an N-best list generated by the phonemic system, however, provides
limited improvements. Further analysis shows that the word-piece-based models
produce more diverse N-best hypotheses, and thus lower oracle WERs, than
phonemic models.Comment: To appear in the proceedings of INTERSPEECH 201
Improving the Performance of Online Neural Transducer Models
Having a sequence-to-sequence model which can operate in an online fashion is
important for streaming applications such as Voice Search. Neural transducer is
a streaming sequence-to-sequence model, but has shown a significant degradation
in performance compared to non-streaming models such as Listen, Attend and
Spell (LAS). In this paper, we present various improvements to NT.
Specifically, we look at increasing the window over which NT computes
attention, mainly by looking backwards in time so the model still remains
online. In addition, we explore initializing a NT model from a LAS-trained
model so that it is guided with a better alignment. Finally, we explore
including stronger language models such as using wordpiece models, and applying
an external LM during the beam search. On a Voice Search task, we find with
these improvements we can get NT to match the performance of LAS
A Comparison of Semi-Supervised Learning Techniques for Streaming ASR at Scale
Unpaired text and audio injection have emerged as dominant methods for
improving ASR performance in the absence of a large labeled corpus. However,
little guidance exists on deploying these methods to improve production ASR
systems that are trained on very large supervised corpora and with realistic
requirements like a constrained model size and CPU budget, streaming
capability, and a rich lattice for rescoring and for downstream NLU tasks. In
this work, we compare three state-of-the-art semi-supervised methods
encompassing both unpaired text and audio as well as several of their
combinations in a controlled setting using joint training. We find that in our
setting these methods offer many improvements beyond raw WER, including
substantial gains in tail-word WER, decoder computation during inference, and
lattice density