45 research outputs found
High magnetic field induced charge density waves and sign reversal of the Hall coefficient in graphite
We report on the investigation of magnetic field induced charge density wave
and Hall coefficient sign reversal in a quasi-two dimensional electronic system
of highly oriented pyrolytic graphite under very strong magnetic field. The
change of Hall sign coefficient from negative to positive occurs at low
temperature and high magnetic field just after the charge density wave
transition, suggesting the role of hole-like quasi-particles in this effect.
Angular dependent measurements show that the charge density wave transition and
Hall sign reversal fields follow the magnetic field component along the c-axis
of graphite
Edge Magneto-Fingerprints in Disordered Graphene Nanoribbons
We report on (magneto)-transport experiments in chemically derived narrow
graphene nanoribbons under high magnetic fields (up to 60 Tesla). Evidences of
field-dependent electronic confinement features are given, and allow estimating
the possible ribbon edge symmetry. Besides, the measured large positive
magnetoconductance indicates a strong suppression of backscattering induced by
the magnetic field. Such scenario is supported by quantum simulations which
consider different types of underlying disorders (smooth edge disorder and long
range Coulomb scatters).Comment: 4 pages, 4 figure
High sensitivity variable-temperature infrared nanoscopy of conducting oxide interfaces
Probing the local transport properties of two-dimensional electron systems
(2DES) confined at buried interfaces requires a non-invasive technique with a
high spatial resolution operating in a broad temperature range. In this paper,
we investigate the scattering-type scanning near field optical microscopy as a
tool for studying the conducting LaAlO3/SrTiO3 interface from room temperature
down to 6 K. We show that the near-field optical signal, in particular its
phase component, is highly sensitive to the transport properties of the
electron system present at the interface. Our modelling reveals that such
sensitivity originates from the interaction of the AFM tip with coupled
plasmon-phonon modes with a small penetration depth. The model allows us to
quantitatively correlate changes in the optical signal with the variation of
the 2DES transport properties induced by cooling and by electrostatic gating.
To probe the spatial resolution of the technique, we image conducting
nano-channels written in insulating heterostructures with a voltage-biased tip
of an atomic force microscope.Comment: 19 pages, 5 figure
Unveiling the Landau Levels Structure of Graphene Nanoribbons
Magnetotransport measurements are performed in ultraclean (lithographically
patterned) graphene nanoribbons down to 70 nm. At high magnetic fields, a
fragmentation of the electronic spectrum into a Landau levels pattern with
unusual features is unveiled. The singular Landau spectrum reveals large
magneto-oscillations of the Fermi energy and valley degeneracy lifting. Quantum
simulations suggest some disorder threshold at the origin of mixing between
opposite chiral magnetic edge states and disappearance of quantum Hall effect
Directional silicon nano-antennas for quantum emitter control designed by evolutionary optimization
We optimize silicon nano-antennas to enhance and steer the emission of local
quantum sources. We combine global evolutionary optimization (EO) with
frequency domain electrodynamical simulations, and compare design strategies
based on resonant and non-resonant building blocks. Specifically, we
investigate the performance of models with different degrees of freedom but
comparable amount of available material. We find that simpler geometric models
allow significantly faster convergence of the optimizer, which, expectedly,
comes at the cost of a reduced optical performance. We finally analyze the
physical mechanisms underlying the directional emission that also comes with an
emission rate enhancement, and find a surprising robustness against
perturbations of the source emitter location. This makes the structures highly
interesting for actual nano-fabrication. We believe that optimized,
all-dielectric silicon nano-antennas have high potential for genuine
breakthroughs in a multitude of applications in nanophotonics and quantum
technologies.Comment: 8 pages, 6 figure
Kapitza-resistance-like exciton dynamics in atomically flat MoSe-WSe lateral heterojunction
Being able to control the neutral excitonic flux is a mandatory step for the
development of future room-temperature two-dimensional excitonic devices.
Semiconducting Monolayer Transition Metal Dichalcogenides (TMD-ML) with
extremely robust and mobile excitons are highly attractive in this regard.
However, generating an efficient and controlled exciton transport over long
distances is a very challenging task. Here we demonstrate that an atomically
sharp TMD-ML lateral heterostructure (MoSe-WSe) transforms the
isotropic exciton diffusion into a unidirectional excitonic flow through the
junction. Using tip-enhanced photoluminescence spectroscopy (TEPL) and a
modified exciton transfer model, we show a discontinuity of the exciton density
distribution on each side of the interface. We introduce the concept of exciton
Kapitza resistance, by analogy with the interfacial thermal resistance referred
to as Kapitza resistance. By comparing different heterostructures with or
without top hexagonal boron nitride (hBN) layer, we deduce that the transport
properties can be controlled, over distances far greater than the junction
width, by the exciton density through near-field engineering and/or laser power
density. This work provides a new approach for controlling the neutral exciton
flow, which is key toward the conception of excitonic devices
Exciton spectroscopy and unidirectional transport in MoSe2-WSe2 lateral heterostructures encapsulated in hexagonal boron nitride
Chemical vapor deposition (CVD) allows lateral edge epitaxy of transition metal dichalcogenide heterostructures. Critical for carrier and exciton transport is the material quality and the nature of the lateral heterojunction. Important details of the optical properties were inaccessible in as-grown heterostructure samples due to large inhomogeneous broadening of the optical transitions. Here we perform optical spectroscopy of CVD grown MoSe-WSe lateral heterostructures, encapsulated in hBN. Photoluminescence (PL), reflectance contrast and Raman spectroscopy reveal optical transition linewidths similar to high quality exfoliated monolayers, while PL imaging experiments uncover the effective excitonic diffusion length of both materials. The typical extent of the covalently bonded MoSe-WSe heterojunctions is 3 nm measured by scanning transmission electron microscopy (STEM). Tip-enhanced, sub-wavelength optical spectroscopy mapping shows the high quality of the heterojunction which acts as an excitonic diode resulting in unidirectional exciton transfer from WSe to MoSe
Electronics properties of graphene and graphene-based systems under pulsed magnetic field
Cette thèse présente des mesures de transport électronique dans des systèmes bi-dimensionels et uni-dimensionels à base de graphène sous champ magnétique pulsé (60T). L'objectif de ces travaux consiste à sonder la dynamique des porteurs de charge en modifiant la densité d'états du système par l'application d'un champ magnétique. Une première partie est consacrée à l'étude de l'influence des îlots électrons-trous sur les propriétés de transport du graphène au voisinage du point de neutralité de charge. Nous avons constaté l'apparition de fluctuations de la magnéto-résistance liée à la transition progressive des îlots de taille finie dans le régime quantique lorsque le champ magnétique augmente. Nous avons aussi montré que la variation de l'énergie de Fermi, liée à l'augmentation de la dégénérescence orbitale des niveaux de Landau, est directement responsable d'une modification du ratio entre électrons et trous. Dans une deuxième partie consacrée à l'étude des nanorubans de graphène, nous avons exploré deux gammes de largeur différentes. Dans les rubans larges (W>60nm), la quantification de la résistance a été observée révélant ainsi une signature évidente de la quantification du spectre énergétique en niveaux de Landau. Le confinement magnétique des porteurs de charge sur les bords des nanorubans a permis de mettre en évidence, pour la première fois, la levée de dégénérescence de vallée liée à la configuration armchair du ruban. Pour des rubans plus étroits (W<30nm), en présence de défauts de bord et d'impuretés chargées, la formation progressive des états de bords chiraux donne lieu à une magnéto-conductance positive quelque soit la densité de porteurs. Enfin, la dernière partie traite du magnéto-transport dans le graphene multi-feuillet. En particulier, nous avons observé l'effet Hall quantique dans les systèmes tri-couche de graphène. Une étude comparative des résultats expérimentaux avec des simulations numériques a permis de déterminer l'empilement rhombohedral des trois couches de graphene constituant l'échantillonThis thesis presents transport measurements on two-dimensional and one-dimensional graphene-based systems under pulsed magnetic field (60T). The objective of this work is to probe the dynamics of charge carriers by changing the density of states of the system by applying a strong magnetic field. The first part is devoted to the study of the influence of electron-hole pockets on the transport properties of graphene near the charge neutrality point. We found the appearance of fluctuations in the magneto-resistance due to the progressive transition of the electron/hole puddles of finite size in the quantum regime as the magnetic field increases. We have also shown that the variation of the Fermi energy, due to the increase of orbital Landau level degeneracy, is directly responsible of a change in the electron and hole ratio. The second part is devoted to the study of graphene nano-ribbons, we explored two different ranges of width. In the broad nano-ribbons of width W larger than 60 nm, the quantification of the resistance is observed, revealing a clear signature of the quantization of the energy spectrum into Landau levels. We show for the first time the effect of valley degeneracy lifting induced by the magnetic confinement of charge carriers at the edges of the armchair nano-ribbons. For narrower nano-ribbons (W <30 nm) in presence of edge defects and charged impurities, the progressive formation of chiral edge states leads to a positive magneto-conductance whatever the carrier density. Finally, the last part of this thesis deals with magneto-transport fingerprints in multi-layer graphene as we observed the quantum Hall effect in tri-layer graphene. A comparative study of the experimental results with numerical simulations was used to determine the rhombohedral stacking of three layers of graphene in the sampl
Etude des propriétés électroniques du graphène et des systèmes à base de graphène sous champs magnétiques intenses
Cette thèse présente des mesures de transport électronique dans des systèmes bi-dimensionels et uni-dimensionels à base de graphène sous champ magnétique pulsé (60T). L'objectif de ces travaux consiste à sonder la dynamique des porteurs de charge en modifiant la densité d'états du système par l'application d'un champ magnétique. Une première partie est consacrée à l'étude de l'influence des îlots électrons-trous sur les propriétés de transport du graphène au voisinage du point de neutralité de charge. Nous avons constaté l'apparition de fluctuations de la magnéto-résistance liée à la transition progressive des îlots de taille finie dans le régime quantique lorsque le champ magnétique augmente. Nous avons aussi montré que la variation de l'énergie de Fermi, liée à l'augmentation de la dégénérescence orbitale des niveaux de Landau, est directement responsable d'une modification du ratio entre électrons et trous. Dans une deuxième partie consacrée à l'étude des nanorubans de graphène, nous avons exploré deux gammes de largeur différentes. Dans les rubans larges (W>60nm), la quantification de la résistance a été observée révélant ainsi une signature évidente de la quantification du spectre énergétique en niveaux de Landau. Le confinement magnétique des porteurs de charge sur les bords des nanorubans a permis de mettre en évidence, pour la première fois, la levée de dégénérescence de vallée liée à la configuration armchair du ruban. Pour des rubans plus étroits (W<30nm), en présence de défauts de bord et d'impuretés chargées, la formation progressive des états de bords chiraux donne lieu à une magnéto-conductance positive quelque soit la densité de porteurs. Enfin, la dernière partie traite du magnéto-transport dans le graphene multi-feuillet. En particulier, nous avons observé l'effet Hall quantique dans les systèmes tri-couche de graphène. Une étude comparative des résultats expérimentaux avec des simulations numériques a permis de déterminer l'empilement rhombohedral des trois couches de graphene constituant l'échantillon.------------------------------------------------------------------------------------------------------------------------------------------This thesis presents transport measurements on two-dimensional and one-dimensional graphene-based systems under pulsed magnetic field (60T). The objective of this work is to probe the dynamics of charge carriers by changing the density of states of the system by applying a strong magnetic field. The first part is devoted to the study of the influence of electron-hole pockets on the transport properties of graphene near the charge neutrality point. We found the appearance of fluctuations in the magneto-resistance due to the progressive transition of the electron/hole puddles of finite size in the quantum regime as the magnetic field increases. We have also shown that the variation of the Fermi energy, due to the increase of orbital Landau level degeneracy, is directly responsible of a change in the electron and hole ratio. The second part is devoted to the study of graphene nano-ribbons, we explored two different ranges of width. In the broad nano-ribbons of width W larger than 60 nm, the quantification of the resistance is observed, revealing a clear signature of the quantization of the energy spectrum into Landau levels. We show for the first time the effect of valley degeneracy lifting induced by the magnetic confinement of charge carriers at the edges of the armchair nano-ribbons. For narrower nano-ribbons (W <30 nm) in presence of edge defects and charged impurities, the progressive formation of chiral edge states leads to a positive magneto-conductance whatever the carrier density. Finally, the last part of this thesis deals with magneto-transport fingerprints in multi-layer graphene as we observed the quantum Hall effect in tri-layer graphene. A comparative study of the experimental results with numerical simulations was used to determine the rhombohedral stacking of three layers of graphene in the sample
Étude des propriétés électroniques du graphène et des matériaux à base de graphène sous champs magnétiques intenses
This thesis presents transport measurement on two-dimensional and uni-dimensional graphene-based systems under pulsed magnetic field (60T). The objective of this work is to probe the dynamics of charge carriers by changing the density of states of the system by applying a magnetic field. The first part is devoted to the study of the influence of electron-hole pockets on the transport properties of graphene near the charge neutrality point. We found the appearance of fluctuations in the magnetoresistance due to the progressive transition of the electrons/holes puddles of finite size in the quantum regime when the magnetic field increases. We have also shown that the variation of the Fermi energy, due to the increase of orbital Landau levels degeneracy, is directly responsible of a change in the electrons and holes ratio. The second part is devoted to the study of graphene nanoribbons, we explored two different width range. In the broad ribbons (W> 60 nm), quantification of the resistance is observed, revealing a clear signature of the quantization of the energy spectrum into Landau levels. We show for the first time the valley degeneracy lifting induce by the magnetic confinement of charge carriers at the edges of armchair nanoribbons. For narrower ribbons (W 60nm), la quantification de la résistance a été observée révélant ainsi une signature évidente de la quantification du spectre énergétique en niveaux de Landau. Le confinement magnétique des porteurs de charge sur les bords des nano rubans a permis de mettre en évidence, pour la première fois, la levée de dégénérescence de vallée liée à la configuration " armchair " du ruban. Pour des rubans plus étroits (W<30nm), en présence de défauts de bord et d'impuretés chargées, la formation progressive des états de bords chiraux donne lieu à une magnéto-conductance positive quelque soit la densité de porteurs. Enfin, la dernière partie traite du magnéto-transport dans le graphene multi feuillet. En particulier, nous avons observé l'effet Hall quantique dans les systèmes tri-couches de graphène. Une étude comparative des résultats expérimentaux avec des simulations numériques a permis de déterminer l'empilement rhomboédrique des trois couches de graphène constituant l'échantillon