18 research outputs found

    Association of noncontrast computed tomography and perfusion modalities with outcomes in patients undergoing late-window stroke thrombectomy

    Get PDF
    IMPORTANCE: There is substantial controversy with regards to the adequacy and use of noncontrast head computed tomography (NCCT) for late-window acute ischemic stroke in selecting candidates for mechanical thrombectomy. OBJECTIVE: To assess clinical outcomes of patients with acute ischemic stroke presenting in the late window who underwent mechanical thrombectomy stratified by NCCT admission in comparison with selection by CT perfusion (CTP) and diffusion-weighted imaging (DWI). DESIGN, SETTING, AND PARTICIPANTS: In this multicenter retrospective cohort study, prospectively maintained Stroke Thrombectomy and Aneurysm (STAR) database was used by selecting patients within the late window of acute ischemic stroke and emergent large vessel occlusion from 2013 to 2021. Patients were selected by NCCT, CTP, and DWI. Admission Alberta Stroke Program Early CT Score (ASPECTS) as well as confounding variables were adjusted. Follow-up duration was 90 days. Data were analyzed from November 2021 to March 2022. EXPOSURES: Selection by NCCT, CTP, or DWI. MAIN OUTCOMES AND MEASURES: Primary outcome was functional independence (modified Rankin scale 0-2) at 90 days. RESULTS: Among 3356 patients, 733 underwent late-window mechanical thrombectomy. The median (IQR) age was 69 (58-80) years, 392 (53.5%) were female, and 449 (65.1%) were White. A total of 419 were selected with NCCT, 280 with CTP, and 34 with DWI. Mean (IQR) admission ASPECTS were comparable among groups (NCCT, 8 [7-9]; CTP, 8 [7-9]; DWI 8, [7-9]; P = .37). There was no difference in the 90-day rate of functional independence (aOR, 1.00; 95% CI, 0.59-1.71; P = .99) after adjusting for confounders. Symptomatic intracerebral hemorrhage (NCCT, 34 [8.6%]; CTP, 37 [13.5%]; DWI, 3 [9.1%]; P = .12) and mortality (NCCT, 78 [27.4%]; CTP, 38 [21.1%]; DWI, 7 [29.2%]; P = .29) were similar among groups. CONCLUSIONS AND RELEVANCE: In this cohort study, comparable outcomes were observed in patients in the late window irrespective of neuroimaging selection criteria. Admission NCCT scan may triage emergent large vessel occlusion in the late window

    Association of Noncontrast Computed Tomography and Perfusion Modalities With Outcomes in Patients Undergoing Late-Window Stroke Thrombectomy

    Get PDF
    Importance: There is substantial controversy with regards to the adequacy and use of noncontrast head computed tomography (NCCT) for late-window acute ischemic stroke in selecting candidates for mechanical thrombectomy. Objective: To assess clinical outcomes of patients with acute ischemic stroke presenting in the late window who underwent mechanical thrombectomy stratified by NCCT admission in comparison with selection by CT perfusion (CTP) and diffusion-weighted imaging (DWI). Design, setting, and participants: In this multicenter retrospective cohort study, prospectively maintained Stroke Thrombectomy and Aneurysm (STAR) database was used by selecting patients within the late window of acute ischemic stroke and emergent large vessel occlusion from 2013 to 2021. Patients were selected by NCCT, CTP, and DWI. Admission Alberta Stroke Program Early CT Score (ASPECTS) as well as confounding variables were adjusted. Follow-up duration was 90 days. Data were analyzed from November 2021 to March 2022. Exposures: Selection by NCCT, CTP, or DWI. Main outcomes and measures: Primary outcome was functional independence (modified Rankin scale 0-2) at 90 days. Results: Among 3356 patients, 733 underwent late-window mechanical thrombectomy. The median (IQR) age was 69 (58-80) years, 392 (53.5%) were female, and 449 (65.1%) were White. A total of 419 were selected with NCCT, 280 with CTP, and 34 with DWI. Mean (IQR) admission ASPECTS were comparable among groups (NCCT, 8 [7-9]; CTP, 8 [7-9]; DWI 8, [7-9]; P = .37). There was no difference in the 90-day rate of functional independence (aOR, 1.00; 95% CI, 0.59-1.71; P = .99) after adjusting for confounders. Symptomatic intracerebral hemorrhage (NCCT, 34 [8.6%]; CTP, 37 [13.5%]; DWI, 3 [9.1%]; P = .12) and mortality (NCCT, 78 [27.4%]; CTP, 38 [21.1%]; DWI, 7 [29.2%]; P = .29) were similar among groups. Conclusions and relevance: In this cohort study, comparable outcomes were observed in patients in the late window irrespective of neuroimaging selection criteria. Admission NCCT scan may triage emergent large vessel occlusion in the late window

    Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil

    Get PDF
    The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others

    Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production.

    Get PDF
    Diseases that cause hemolysis or myonecrosis lead to the leakage of large amounts of heme proteins. Free heme has proinflammatory and cytotoxic effects. Heme induces TLR4-dependent production of tumor necrosis factor (TNF), whereas heme cytotoxicity has been attributed to its ability to intercalate into cell membranes and cause oxidative stress. We show that heme caused early macrophage death characterized by the loss of plasma membrane integrity and morphologic features resembling necrosis. Heme-induced cell death required TNFR1 and TLR4/MyD88-dependent TNF production. Addition of TNF to Tlr4−/− or to Myd88−/− macrophages restored heme-induced cell death. The use of necrostatin-1, a selective inhibitor of receptor-interacting protein 1 (RIP1, also known as RIPK1), or cells deficient in Rip1 or Rip3 revealed a critical role for RIP proteins in heme-induced cell death. Serum, antioxidants, iron chelation, or inhibition of c-Jun N-terminal kinase (JNK) ameliorated heme-induced oxidative burst and blocked macrophage cell death. Macrophages from heme oxygenase-1 deficient mice (Hmox1−/−) had increased oxidative stress and were more sensitive to heme. Taken together, these results revealed that heme induces macrophage necrosis through 2 synergistic mechanisms: TLR4/Myd88-dependent expression of TNF and TLR4-independent generation of ROS.Fil: Fortes, Guilherme B.. Universidade Federal do Rio de Janeiro; BrasilFil: Alves, Leticia S.. Universidade Federal do Rio de Janeiro; BrasilFil: Olivera, Rosane de. University of Massachussets; Estados Unidos. Universidade Federal do Rio de Janeiro; BrasilFil: Dutra, Fabianno F.. Universidade Federal do Rio de Janeiro; BrasilFil: Rodrigues, Danielle. Universidade Federal do Rio de Janeiro; BrasilFil: Fernandez, Patricia F.. Instituto de Investigaciones Científicas y Servicios de Alta Tecnología; PanamáFil: Souto Padron, Thais. Instituto de Investigaciones Cientificas y Servicios de alta Tecnología; PanamáFil: de Rosa, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Kelliher, Michelle. University of Massachussets; Estados UnidosFil: Golenbock, Douglas. University of Massachussets; Estados UnidosFil: Chan, Francis K. M.. University of Massachussets; Estados UnidosFil: Bozza, Marcelo T.. Universidade Federal do Rio de Janeiro; Brasi
    corecore