148 research outputs found
Complications after cryosurgery with new miniature cryoprobes in long hollow bones: An animal trial
BACKGROUND: In vitro studies show that new miniature cryoprobes are suitable for cryoablation of bone tissue. The aim of this animal trial on 24 sheep was to examine the perioperative complications, particularly the danger of embolism, of cryoablation when using miniature cryoprobes. METHODS: Cryoablations with 2 freeze-thaw cycles each were carried out in the epiphysis of the right tibia and the metaphysis of the left femur. Pulmonary artery pressure (PAP) and central venous pressure (CVP) were measured. Throughout the intra- and perioperative phase, heart rate and oxygen saturation by pulse oxymetry, blood gas and electrolytes were monitored regularly. Postoperative complications were examined up to 24 weeks postoperativ. RESULTS: As result, no significant increase of PAP, CVP or heart rate were observed. Blood gases were unremarkable, with pO(2 )and pCO(2 )remaining constant throughout the operation. Regarding pH, standard bicarbonate and base excess, only a non-significant shift towards a slight acidosis was seen. There was a mean hemoglobin decrease of 0.5 g/dl. One animal showed postoperative wound infection and wound edge necrosis. No major peri- and postoperative complications associated with cryosurgery of bone were observed, especially regarding clinically relevant pulmonary embolism. CONCLUSION: Surgery with new types of miniature cryoprobes appears to be a safe alternative to or a complement to conventional resection of abnormal bone tissue
Flexible and Extended Linker Domains Support Efficient Targeting of Heh2 to the Inner Nuclear Membrane
The nuclear pore complex (NPC) is embedded in the nuclear envelope and forms the main gateway to the nuclear interior including the inner nuclear membrane (INM). Two INM proteins in yeast are selectively imported. Their sorting signals consist of a nuclear localization signal, separated from the transmembrane domain by a long intrinsically disordered (ID) linker. We used computational models to predict the dynamic conformations of ID linkers and analyzed the INM targeting efficiency of proteins with linker regions with altered Stokes radii and decreased flexibilities. We find that flexibility, Stokes radius, and the frequency at which the linkers are at an extended end-to-end distance larger than 25 nm are good predictors for the targeting of the proteins. The data are consistent with a transport mechanism in which INM targeting of Heh2 is dependent on an ID linker that facilitates the crossing of the approximately 25-nm thick NPC scaffold
Impact of Treadmill Running and Sex on Hippocampal Neurogenesis in the Mouse Model of Amyotrophic Lateral Sclerosis
Hippocampal neurogenesis in the subgranular zone (SGZ) of dentate gyrus (DG) occurs throughout life and is regulated by pathological and physiological processes. The role of oxidative stress in hippocampal neurogenesis and its response to exercise or neurodegenerative diseases remains controversial. The present study was designed to investigate the impact of oxidative stress, treadmill exercise and sex on hippocampal neurogenesis in a murine model of heightened oxidative stress (G93A mice). G93A and wild type (WT) mice were randomized to a treadmill running (EX) or a sedentary (SED) group for 1 or 4 wk. Immunohistochemistry was used to detect bromodeoxyuridine (BrdU) labeled proliferating cells, surviving cells, and their phenotype, as well as for determination of oxidative stress (3-NT; 8-OHdG). BDNF and IGF1 mRNA expression was assessed by in situ hybridization. Results showed that: (1) G93A-SED mice had greater hippocampal neurogenesis, BDNF mRNA, and 3-NT, as compared to WT-SED mice. (2) Treadmill running promoted hippocampal neurogenesis and BDNF mRNA content and lowered DNA oxidative damage (8-OHdG) in WT mice. (3) Male G93A mice showed significantly higher cell proliferation but a lower level of survival vs. female G93A mice. We conclude that G93A mice show higher hippocampal neurogenesis, in association with higher BDNF expression, yet running did not further enhance these phenomena in G93A mice, probably due to a ‘ceiling effect’ of an already heightened basal levels of hippocampal neurogenesis and BDNF expression
The United States COVID-19 Forecast Hub dataset
Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages
- …