432 research outputs found
On the trace formula for Hecke operators on congruence subgroups, II
In a previous paper, we obtained a general trace formula for double coset
operators acting on modular forms for congruence subgroups, expressed as a sum
over conjugacy classes. Here we specialize it to the congruence subgroups
and , obtaining explicit formulas in terms of class
numbers for the trace of a composition of Hecke and Atkin-Lehner operators. The
formulas are among the simplest in the literature, and hold without any
restriction on the index of the operators. We give two applications of the
trace formula for : we determine explicit trace forms for
with Nebentypus, and we compute the limit of the trace of a fixed
Hecke operator as the level tends to infinity
The min-max edge q-coloring problem
In this paper we introduce and study a new problem named \emph{min-max edge
-coloring} which is motivated by applications in wireless mesh networks. The
input of the problem consists of an undirected graph and an integer . The
goal is to color the edges of the graph with as many colors as possible such
that: (a) any vertex is incident to at most different colors, and (b) the
maximum size of a color group (i.e. set of edges identically colored) is
minimized. We show the following results: 1. Min-max edge -coloring is
NP-hard, for any . 2. A polynomial time exact algorithm for min-max
edge -coloring on trees. 3. Exact formulas of the optimal solution for
cliques and almost tight bounds for bicliques and hypergraphs. 4. A non-trivial
lower bound of the optimal solution with respect to the average degree of the
graph. 5. An approximation algorithm for planar graphs.Comment: 16 pages, 5 figure
A Parameterized Study of Maximum Generalized Pattern Matching Problems
The generalized function matching (GFM) problem has been intensively studied
starting with [Ehrenfeucht and Rozenberg, 1979]. Given a pattern p and a text
t, the goal is to find a mapping from the letters of p to non-empty substrings
of t, such that applying the mapping to p results in t. Very recently, the
problem has been investigated within the framework of parameterized complexity
[Fernau, Schmid, and Villanger, 2013].
In this paper we study the parameterized complexity of the optimization
variant of GFM (called Max-GFM), which has been introduced in [Amir and Nor,
2007]. Here, one is allowed to replace some of the pattern letters with some
special symbols "?", termed wildcards or don't cares, which can be mapped to an
arbitrary substring of the text. The goal is to minimize the number of
wildcards used.
We give a complete classification of the parameterized complexity of Max-GFM
and its variants under a wide range of parameterizations, such as, the number
of occurrences of a letter in the text, the size of the text alphabet, the
number of occurrences of a letter in the pattern, the size of the pattern
alphabet, the maximum length of a string matched to any pattern letter, the
number of wildcards and the maximum size of a string that a wildcard can be
mapped to.Comment: to appear in Proc. IPEC'1
- β¦