427 research outputs found

    The Structure and Dynamics of Molecular Gas in Planet-forming Zones: A CRIRES Spectro-astrometric Survey

    Get PDF
    We present a spectro-astrometric survey of molecular gas in the inner regions of 16 protoplanetary disks using CRIRES, the high-resolution infrared imaging spectrometer on the Very Large Telescope. Spectro-astrometry with CRIRES measures the spatial extent of line emission to sub-milliarcsecond precision, or <0.2 AU at the distance of the observed targets. The sample consists of gas-rich disks surrounding stars with spectral types ranging from K to A. The properties of the spectro-astrometric signals divide the sources into two distinct phenomenological classes: one that shows clear Keplerian astrometric spectra and one in which the astrometric signatures are dominated by gas with strong non-Keplerian (radial) motions. Similarly to the near-infrared continuum emission, as determined by interferometry, we find that the size of the CO line emitting region in the Keplerian sources obeys a size-luminosity relation as R_(CO) α_L^(0.5)_*. The non-Keplerian spectro-astrometric signatures are likely indicative of the presence of wide-angle disk winds. The central feature of the winds is a strong sub-Keplerian velocity field due to conservation of angular momentum as the wind pressure drives the gas outward. We construct a parameterized two-dimensional disk+wind model that reproduces the observed characteristics of the observed CO spectra and astrometry. The modeled winds indicate mass-loss rates of ≳ 10^(–10) to 10^(–8) M_⊙ yr^(–1). We suggest a unifying model in which all disks have slow molecular winds, but where the magnitude of the mass-loss rate determines the degree to which the mid-infrared molecular lines are dominated by the wind relative to the Keplerian disk surface

    The Physical Structure of Protoplanetary Disks: the Serpens Cluster Compared with Other Regions

    Get PDF
    Spectral energy distributions are presented for 94 young stars surrounded by disks in the Serpens Molecular Cloud, based on photometry and Spitzer IRS spectra. Taking a distance to the cloud of 415 pc rather than 259 pc, the distribution of ages is shifted to lower values, in the 1-3 Myr range, with a tail up to 10 Myr. The mass distribution spans 0.2-1.2 Msun, with median mass of 0.7 Msun. The distribution of fractional disk luminosities in Serpens resembles that of the young Taurus Molecular Cloud, with most disks consistent with optically thick, passively irradiated disks in a variety of disk geometries (Ldisk/Lstar ~ 0.1). In contrast, the distributions for the older Upper Scorpius and Eta Chamaeleontis clusters are dominated by optically thin lower luminosity disks (Ldisk/Lstar ~ 0.02). This evolution in fractional disk luminosities is concurrent with that of disk fractions. The actively accreting and non-accreting stars (based on Ha data) in Serpens show very similar distributions in fractional disk luminosities, differing only in the brighter tail dominated by strongly accreting stars. In contrast with a sample of Herbig Ae/Be stars, the T Tauri stars in Serpens do not have a clear separation in fractional disk luminosities for different disk geometries: both flared and flat disks present wider, overlapping distributions. This result is consistent with previous suggestions of a faster evolution for disks around Herbig Ae/Be stars. Furthermore, the results for the mineralogy of the dust in the disk surface do not show any correlation to either stellar and disk characteristics or mean cluster age in the 1-10 Myr range probed here. A possible explanation for the lack of correlation is that the processes affecting the dust within disks have short timescales, happening repeatedly, making it difficult to distinguish long lasting evolutionary effects. [abridged]Comment: ApJ in pres

    Heterogeneity in 12^{12}CO/13^{13}CO Ratios Toward Solar-Type Young Stellar Objects

    Get PDF
    This study reports an unusual heterogeneity in [12^{12}C16^{16}O]/[13^{13}C16^{16}O] abundance ratios of carbon monoxide observed in the gas phase toward seven ~ solar-mass YSOs and three dense foreground clouds in the nearby star-forming regions, Ophiuchus, Corona Australis, Orion, Vela and an isolated core, L43. Robust isotope ratios were derived using infrared absorption spectroscopy of the 4.7 μ\mum fundamental and 2.3 μ\mum overtone rovibrational bands of CO at very high resolution (λ\lambda/Δ\Deltaλ95,000\lambda\approx 95,000), observed with the CRIRES spectrograph on the Very Large Telescope. We find [12^{12}C16^{16}O]/[13^{13}C16^{16}O] values ranging from ~ 85 to 165, significantly higher than those of the local interstellar medium (~ 65 to 69). These observations are evidence for isotopic heterogeneity in carbon reservoirs in solar-type YSO environments, and encourage the need for refined Galactic chemical evolution models to explain the 12^{12}C/13^{13}C discrepancy between the solar system and local ISM. The oxygen isotope ratios are consistent with isotopologue-specific photodissociation by CO self-shielding toward the disks, VV CrA N and HL Tau, further substantiating models predicting CO self-shielding on disk surfaces. However, we find that CO self-shielding is an unlikely general explanation for the high [12^{12}C16^{16}O]/[13^{13}C16^{16}O] ratios observed in this study. Comparison of the solid CO against gas-phase [12^{12}C16^{16}O]/[13^{13}C16^{16}O] suggests that interactions between CO ice and gas reservoirs need to be further investigated as at least a partial explanation for the unusually high [12^{12}C16^{16}O]/[13^{13}C16^{16}O] observed.Comment: 16 pages, 14 figures, 7 tables. Accepted for publication in The Astrophysical Journa

    A UV-to-MIR monitoring of DR Tau: exploring how water vapor in the planet formation region of the disk is affected by stellar accretion variability

    Full text link
    Young stars are known to show variability due to non-steady mass accretion rate from their circumstellar disks. Accretion flares can produce strong energetic irradiation and heating that may affect the disk in the planet formation region, close to the central star. During an extreme accretion outburst in the young star EX Lupi, the prototype of EXor variables, remarkable changes in molecular gas emission from 1\sim1 AU in the disk have recently been observed (Banzatti et al. 2012). Here, we focus on water vapor and explore how it is affected by variable accretion luminosity in T Tauri stars. We monitored a young highly variable solar-mass star, DR Tau, using simultaneously two high/medium-resolution ESO-VLT spectrographs: VISIR at 12.4 μ\mum to observe water lines from the disk, and X-shooter covering from 0.3 to 2.5 μ\mum to constrain the stellar accretion. Three epochs spanning timescales from several days to several weeks were obtained. Accretion luminosity was estimated to change within a factor 2\sim2, and no change in water emission was detected at a significant level. In comparison to EX Lupi and EXor outbursts, DR Tau suggests that the less long-lived and weaker variability phenomena typical of T Tauri stars may leave water at planet-forming radii in the disk mostly unaffected. We propose that these systems may provide evidence for two processes that act over different timescales: UV photochemistry in the disk atmosphere (faster) and heating of the disk deeper layers (slower).Comment: 8 pages, 7 figures, accepted for publication in The Astrophysical Journa

    Volatiles in protoplanetary disks

    Full text link
    Volatiles are compounds with low sublimation temperatures, and they make up most of the condensible mass in typical planet-forming environments. They consist of relatively small, often hydrogenated, molecules based on the abundant elements carbon, nitrogen and oxygen. Volatiles are central to the process of planet formation, forming the backbone of a rich chemistry that sets the initial conditions for the formation of planetary atmospheres, and act as a solid mass reservoir catalyzing the formation of planets and planetesimals. This growth has been driven by rapid advances in observations and models of protoplanetary disks, and by a deepening understanding of the cosmochemistry of the solar system. Indeed, it is only in the past few years that representative samples of molecules have been discovered in great abundance throughout protoplanetary disks - enough to begin building a complete budget for the most abundant elements after hydrogen and helium. The spatial distributions of key volatiles are being mapped, snow lines are directly seen and quantified, and distinct chemical regions within protoplanetary disks are being identified, characterized and modeled. Theoretical processes invoked to explain the solar system record are now being observationally constrained in protoplanetary disks, including transport of icy bodies and concentration of bulk condensibles. The balance between chemical reset - processing of inner disk material strong enough to destroy its memory of past chemistry, and inheritance - the chemically gentle accretion of pristine material from the interstellar medium in the outer disk, ultimately determines the final composition of pre-planetary matter. This chapter focuses on making the first steps toward understanding whether the planet formation processes that led to our solar system are universal.Comment: Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    Detection of water vapor in the terrestrial planet forming region of a transition disk

    Get PDF
    We report a detection of water vapor in the protoplanetary disk around DoAr 44 with the Texas Echelon Cross Echelle Spectrograph --- a visitor instrument on the Gemini north telescope. The DoAr 44 disk consists of an optically thick inner ring and outer disk, separated by a dust-cleared 36 AU gap, and has therefore been termed "pre-transitional". To date, this is the only disk with a large inner gap known to harbor detectable quantities of warm (T=450 K) water vapor. In this work, we detect and spectrally resolve three mid-infrared pure rotational emission lines of water vapor from this source, and use the shapes of the emission lines to constrain the location of the water vapor. We find that the emission originates near 0.3 AU --- the inner disk region. This characteristic region coincides with that inferred for both optically thick and thin thermal infrared dust emission, as well as rovibrational CO emission. The presence of water in the dust-depleted region implies substantial columns of hydrogen (>10^{22} cm-2) as the water vapor would otherwise be destroyed by photodissociation. Combined with the dust modeling, this column implies a gas/small-dust ratio in the optically thin dusty region of >1000. These results demonstrate that DoAr 44 has maintained similar physical and chemical conditions to classical protoplanetary disks in its terrestrial-planet forming regions, in spite of having formed a large gap.Comment: Paper accepted to the Astrophysical Journal Letter

    Resolved gas cavities in transitional disks inferred from CO isotopologues with ALMA

    Get PDF
    Transitional disks around young stars are promising candidates to look for recently formed, embedded planets. Planet-disk interaction models predict that planets clear a gap in the gas while trapping dust at larger radii. Other physical mechanisms could be responsible for cavities as well. Previous observations have revealed that gas is still present inside these cavities, but the spatial distribution of this gas remains uncertain. We present high spatial resolution observations with the Atacama Large Millimeter/submillimeter Array (ALMA) of 13CO and C18O lines of four well-studied transitional disks. The observations are used to set constraints on the gas surface density, specifically cavity size and density drop inside the cavity. The physical-chemical model DALI is used to analyze the gas images of SR21, HD135344B, DoAr44 and IRS48. The main parameters of interest are the size, depth and shape of the gas cavity. CO isotope-selective photodissociation is included to properly constrain the surface density in the outer disk from C18O emission. The gas cavities are up to 3 times smaller than those of the dust in all four disks. Model fits indicate that the surface density inside the gas cavities decreases by a factor of 100-10000 compared with the surface density profile derived from the outer disk. A comparison with an analytical model of gap depths by planet-disk interaction shows that the disk viscosities are likely low, with a<1E-3 for planet masses <10 MJup. The resolved measurements of the gas and dust in transition disk cavities support the predictions of models that describe how planet-disk interactions sculpt gas disk structures and influence the evolution of dust grains. These observed structures strongly suggest the presence of giant planetary companions in transition disk cavities, although at smaller orbital radii than is typically indicated from the dust cavity radii alone.Comment: Accepted by A&A; version after language-editin
    corecore