66 research outputs found
Temperature control of thermal radiation from heterogeneous bodies
We demonstrate that recent advances in nanoscale thermal transport and
temperature manipulation can be brought to bear on the problem of tailoring
thermal radiation from compact emitters. We show that wavelength-scale
composite bodies involving complicated arrangements of phase-change
chalcogenide (GST) glasses and metals or semiconductors can exhibit large
emissivities and partial directivities at mid-infrared wavelengths, a
consequence of temperature localization within the GST. We consider multiple
object topologies, including spherical, cylindrical, and mushroom-like
composites, and show that partial directivity follows from a complicated
interplay between particle shape, material dispersion, and temperature
localization. Our calculations exploit a recently developed fluctuating-volume
current formulation of electromagnetic fluctuations that rigorously captures
radiation phenomena in structures with both temperature and dielectric
inhomogeneities.Comment: 17 pages, 7 figuer
Fluctuating volume-current formulation of electromagnetic fluctuations in inhomogeneous media: incandecence and luminescence in arbitrary geometries
We describe a fluctuating volume--current formulation of electromagnetic
fluctuations that extends our recent work on heat exchange and Casimir
interactions between arbitrarily shaped homogeneous bodies [Phys. Rev. B. 88,
054305] to situations involving incandescence and luminescence problems,
including thermal radiation, heat transfer, Casimir forces, spontaneous
emission, fluorescence, and Raman scattering, in inhomogeneous media. Unlike
previous scattering formulations based on field and/or surface unknowns, our
work exploits powerful techniques from the volume--integral equation (VIE)
method, in which electromagnetic scattering is described in terms of
volumetric, current unknowns throughout the bodies. The resulting trace
formulas (boxed equations) involve products of well-studied VIE matrices and
describe power and momentum transfer between objects with spatially varying
material properties and fluctuation characteristics. We demonstrate that thanks
to the low-rank properties of the associatedmatrices, these formulas are
susceptible to fast-trace computations based on iterative methods, making
practical calculations tractable. We apply our techniques to study thermal
radiation, heat transfer, and fluorescence in complicated geometries, checking
our method against established techniques best suited for homogeneous bodies as
well as applying it to obtain predictions of radiation from complex bodies with
spatially varying permittivities and/or temperature profiles
Fundamental limits to optical response in absorptive systems
At visible and infrared frequencies, metals show tantalizing promise for
strong subwavelength resonances, but material loss typically dampens the
response. We derive fundamental limits to the optical response of absorptive
systems, bounding the largest enhancements possible given intrinsic material
losses. Through basic conservation-of-energy principles, we derive
geometry-independent limits to per-volume absorption and scattering rates, and
to local-density-of-states enhancements that represent the power radiated or
expended by a dipole near a material body. We provide examples of structures
that approach our absorption and scattering limits at any frequency, by
contrast, we find that common "antenna" structures fall far short of our
radiative LDOS bounds, suggesting the possibility for significant further
improvement. Underlying the limits is a simple metric, for a material with susceptibility , that enables
broad technological evaluation of lossy materials across optical frequencies.Comment: 21 pages and 6 figures (excluding appendices, references
Evaluation of Weakly Singular Integrals Via Generalized Cartesian Product Rules Based on the Double Exponential Formula
- …
