6 research outputs found

    DataSheet1_Crystalline Sponge Method by Three-Dimensional Electron Diffraction.DOCX

    No full text
    The crystalline sponge method has shown to be a novel strategy for the structure determination of noncrystalline, oily, or trace amount of a compound. A target compound was absorbed and oriented orderly in the pregrown porous crystal for x-ray diffraction analysis. However, the diffusion in the micron-sized crystals is rather difficult. Lots of trial-and-error experiments are needed to optimize the guest-soaking process and to improve data quality. Nanocrystals are better in diffusion, yet it could not conduct a single crystal x-ray diffraction (SCXRD) analysis. Three-dimensional electron diffraction (3D-ED) is a powerful diffraction tool for the structure determination of small crystals. In this work, we successfully carried out the crystalline sponge method by 3D-ED technique using {(ZnI2)3-[2,4,6-tris(4-pyridyl)-1,3,5-triazine]2·x(guest)}n (1-Guest) porous complex nanocrystals. On account of the better diffuse ability of nanocrystals, the time needed for solvent exchange and guest soaking protocols are shortened 50-fold faster versus the original protocol. The crystal structure of the crystalline sponge incorporated with three different guests was fully resolved using a merged dataset. The structure model was identical to previously reported ones using x-ray, showing that the accuracy of the 3D-ED was comparable with SCXRD. The refinement results can also give the precise occupancy of the guest molecule soaked in the porous crystal. This work not only provides a new data collection strategy for crystalline sponge method but also demonstrates the potential of 3D-ED techniques to study host-guest interaction by solving the fine structure of porous material.</p

    DataSheet2_Crystalline Sponge Method by Three-Dimensional Electron Diffraction.ZIP

    No full text
    The crystalline sponge method has shown to be a novel strategy for the structure determination of noncrystalline, oily, or trace amount of a compound. A target compound was absorbed and oriented orderly in the pregrown porous crystal for x-ray diffraction analysis. However, the diffusion in the micron-sized crystals is rather difficult. Lots of trial-and-error experiments are needed to optimize the guest-soaking process and to improve data quality. Nanocrystals are better in diffusion, yet it could not conduct a single crystal x-ray diffraction (SCXRD) analysis. Three-dimensional electron diffraction (3D-ED) is a powerful diffraction tool for the structure determination of small crystals. In this work, we successfully carried out the crystalline sponge method by 3D-ED technique using {(ZnI2)3-[2,4,6-tris(4-pyridyl)-1,3,5-triazine]2·x(guest)}n (1-Guest) porous complex nanocrystals. On account of the better diffuse ability of nanocrystals, the time needed for solvent exchange and guest soaking protocols are shortened 50-fold faster versus the original protocol. The crystal structure of the crystalline sponge incorporated with three different guests was fully resolved using a merged dataset. The structure model was identical to previously reported ones using x-ray, showing that the accuracy of the 3D-ED was comparable with SCXRD. The refinement results can also give the precise occupancy of the guest molecule soaked in the porous crystal. This work not only provides a new data collection strategy for crystalline sponge method but also demonstrates the potential of 3D-ED techniques to study host-guest interaction by solving the fine structure of porous material.</p

    A New Layered Silicogermanate PKU-23 and Its Transformation to a Zeolite with Three-Dimensional Channels

    No full text
    PKU-23, a new layered silicogermanate with eight-ring pores in the crystalline sheets, was hydrothermally synthesized under fluoride conditions by using 4-dimethylaminopyridine (DMAP) or 1-benzyl-4-dimethylaminopyridinium hydroxide (DMAP-Bn) as organic structure directing agents (OSDAs). The structure determination from single-crystal X-ray diffraction showed the PKU-23 was a layered material with the double four-ring (d4r) units connected by the interrupted zigzag chains. The layers in PKU-23 were found to stack by simple translation. The OSDA cations were occluded between the adjacent layers. The topotactic condensation of layered PKU-23 resulted in a three-dimensional (3D) zeolite PKU-23-Z, which possessed a 10 × 8 × 8 channel system. The framework topology of PKU-23-Z is the same as zeolite ECNU-16. PKU-23 is the first reported zeolite precursor that could form a 3D channel system after topotactic condensation

    Crystallization of Dimensional Isomers in Covalent Organic Frameworks

    No full text
    Dimensional isomers, defined in reticular chemistry as frameworks consisting of identical molecular building blocks but extended in two or three dimensions (2D or 3D), are an important type of framework isomers that have never been isolated. Herein, we report the crystallization of dimensional isomers in covalent organic frameworks (COFs) for the first time. By polymerization of the same molecular building blocks at different temperatures, both 2D and 3D COFs were successfully constructed due to the temperature-induced conformational changes of precursors from planar to tetrahedral. In addition, the non-fluorescent 2D COF can be gradually converted into the fluorescent 3D COF by increasing the temperature under solvothermal conditions. Therefore, it is reasonable to crystallize the dimensional isomers of reticular materials by controlling the conformation of molecular building blocks, and more examples can be expected. Since the obtained dimensional isomers show different properties and functions, this work will definitely motivate us to design reticular materials for target applications in the future

    Observation of Interpenetration Isomerism in Covalent Organic Frameworks

    No full text
    We report herein the first example of interpenetration isomerism in covalent organic frameworks (COFs). As a well-known three-dimensional (3D) COF, COF-300 was synthesized and characterized by the Yaghi group in 2009 as a 5-fold interpenetrated diamond structure (dia-c5 topology). We found that adding an aging process prior to the reported synthetic procedure afforded the formation of an interpenetration isomer, dia-c7 COF-300. The 7-fold interpenetrated diamond structure of this new isomer was identified by powder X-ray diffraction and rotation electron diffraction analyses. Furthermore, we proposed a universal formula to accurately determine the number of interpenetration degrees of dia-based COFs from only the unit cell parameters and the length of the organic linker. This work not only provides a novel example to the category of interpenetration isomerism but also provides new insights for the further development of 3D COFs

    Observation of Interpenetration Isomerism in Covalent Organic Frameworks

    No full text
    We report herein the first example of interpenetration isomerism in covalent organic frameworks (COFs). As a well-known three-dimensional (3D) COF, COF-300 was synthesized and characterized by the Yaghi group in 2009 as a 5-fold interpenetrated diamond structure (<b><i>dia-c5</i></b> topology). We found that adding an aging process prior to the reported synthetic procedure afforded the formation of an interpenetration isomer, <b><i>dia-c7</i></b> COF-300. The 7-fold interpenetrated diamond structure of this new isomer was identified by powder X-ray diffraction and rotation electron diffraction analyses. Furthermore, we proposed a universal formula to accurately determine the number of interpenetration degrees of <b><i>dia</i></b>-based COFs from only the unit cell parameters and the length of the organic linker. This work not only provides a novel example to the category of interpenetration isomerism but also provides new insights for the further development of 3D COFs
    corecore