45 research outputs found
Sonification and science pedagogy: preliminary experiences and assessments of earth science data presented in an undergraduate general education course
This paper describes preliminary investigations into how
sonifications of scientific graphs are perceived by
undergraduate students in an introductory course in
oceanography at the University of Rhode Island. The goal is
to gather data that can assist in gauging students’ levels of
engagement with sonification as a component of science
education. The results, while preliminary, show promise that
sonified graphs improve understanding, especially when they
are presented in combination with visual graphs
Subseafloor life and its biogeochemical impacts
Subseafloor microbial activities are central to Earth’s biogeochemical cycles. They control Earth’s surface oxidation and major aspects of ocean chemistry. They affect climate on long timescales and play major roles in forming and destroying economic resources. In this review, we evaluate present understanding of subseafloor microbes and their activities, identify research gaps, and recommend approaches to filling those gaps. Our synthesis suggests that chemical diffusion rates and reaction affinities play a primary role in controlling rates of subseafloor activities. Fundamental aspects of subseafloor communities, including features that enable their persistence at low catabolic rates for millions of years, remain unknown
Global Distribution of Microbial Abundance and Biomass in Subseafloor Sediment
The global geographic distribution of subseafloor sedimentary microbes and the cause(s) of that distribution are largely unexplored. Here, we show that total microbial cell abundance in subseafloor sediment varies between sites by ca. five orders of magnitude. This variation is strongly correlated with mean sedimentation rate and distance from land. Based on these correlations, we estimate global subseafloor sedimentary microbial abundance to be 2.9⋅1029 cells [corresponding to 4.1 petagram (Pg) C and ∼0.6% of Earth’s total living biomass]. This estimate of subseafloor sedimentary microbial abundance is roughly equal to previous estimates of total microbial abundance in seawater and total microbial abundance in soil. It is much lower than previous estimates of subseafloor sedimentary microbial abundance. In consequence, we estimate Earth’s total number of microbes and total living biomass to be, respectively, 50–78% and 10–45% lower than previous estimates
Deep North Atlantic last glacial maximum salinity reconstruction
Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(7), (2021): e2020PA004088, https://doi.org/10.1029/2020PA004088.We reconstruct deep water-mass salinities and spatial distributions in the western North Atlantic during the Last Glacial Maximum (LGM, 19–26 ka), a period when atmospheric CO2 was significantly lower than it is today. A reversal in the LGM Atlantic meridional bottom water salinity gradient has been hypothesized for several LGM water-mass reconstructions. Such a reversal has the potential to influence climate, ocean circulation, and atmospheric CO2 by increasing the thermal energy and carbon storage capacity of the deep ocean. To test this hypothesis, we reconstructed LGM bottom water salinity based on sedimentary porewater chloride profiles in a north-south transect of piston cores collected from the deep western North Atlantic. LGM bottom water salinity in the deep western North Atlantic determined by the density-based method is 3.41–3.99 ± 0.15% higher than modern values at these sites. This increase is consistent with: (a) the 3.6% global average salinity change expected from eustatic sea level rise, (b) a northward expansion of southern sourced deep water, (c) shoaling of northern sourced deep water, and (d) a reversal of the Atlantic's north-south deep water salinity gradient during the LGM.This work was supported by the US National Science Foundation (grant numbers 1433150 and 1537485).2021-10-2
Biomass burning is a source of modern black carbon to equatorial Atlantic Ocean sediments
Black carbon is a refractory form of organic carbon formed from the incomplete combustion of fossil fuels and biomass. Riverine transport is considered the dominant pathway of black carbon to the coastal oceans. However, the provenance and pathways of black carbon to the open ocean remain unknown. Here we use both stable and radiogenic isotopes of carbon to show that sedimentary black carbon across the equatorial Atlantic Ocean is aeolian and primarily derived from biomass burning of C4-plants. Fluxes of surface sedimentary black carbon measured along an equatorial Atlantic Ocean transect using chemothermal oxidation at 375 °C were relatively consistent across the Atlantic, ranging from 0.10–0.35 mg cm−2 kyr−1. Carbon isotope values near Africa suggest the black carbon was mostly young and derived from C4 plants, whereas offshore South America, the black carbon was older and dominated by C3 plants. The black carbon radiocarbon values were similar to the reservoir corrected total organic carbon near Africa, implying little pre-aging on land and increased westwards. These findings highlight the influence of C4-biomass burning in the tropical Atlantic and the importance of aeolian deposition as a black carbon source within the global carbon cycle
Relationship of bacterial richness to organic degradation rate and sediment age in subseafloor sediment
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Applied and Environmental Microbiology 82 (2016): 4994-4999, doi:10.1128/AEM.00809-16.Subseafloor sediment hosts a large, taxonomically rich and metabolically diverse microbial ecosystem. However, the factors that control microbial diversity in subseafloor sediment have rarely been explored. Here we show that bacterial richness varies with organic degradation rate and sediment age. At three open-ocean sites (in the Bering Sea and equatorial Pacific) and one continental margin site (Indian Ocean), richness decreases exponentially with increasing sediment depth. The rate of decrease in richness with depth varies from site to site. The vertical succession of predominant terminal electron acceptors correlates to abundance-weighted community composition, but does not drive the vertical decrease in richness. Vertical patterns of richness at the open-ocean sites closely match organic degradation rates; both properties are highest near the seafloor and decline together as sediment depth increases. This relationship suggests that (i) total catabolic activity and/or electron donor diversity exerts a primary influence on bacterial richness in marine sediment, and (ii) many bacterial taxa that are poorly adapted for subseafloor sedimentary conditions are degraded in the geologically young sediment where respiration rates are high. Richness consistently takes a few hundred thousand years to decline from near-seafloor values to much lower values in deep anoxic subseafloor sediment, regardless of sedimentation rate, predominant terminal electron acceptor, or oceanographic context.This work, including the efforts of Mitchell L. Sogin and Steven D’Hondt,
was funded by Sloan Foundation (Census of Deep Life). This work, including
the efforts of Steven D’Hondt, was funded by U.S. Science Support
Program for IODP. This work, including the efforts of Steven
D’Hondt, was funded by National Science Foundation (NSF) (OCE-
0752336 and OCE-0939564).
The work of E. A. Walsh, J. B. Kirkpatrick, R. Pockalny, and J. Sauvage was
funded by the grants to S. D’Hondt
Atribacteria reproducing over millions of years in the Atlantic abyssal subseafloor
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Vuillemin, A., Vargas, S., Coskun, O. K., Pockalny, R., Murray, R. W., Smith, D. C., D'Hondt, S., & Orsi, W. D. Atribacteria reproducing over millions of years in the Atlantic abyssal subseafloor. Mbio, 11(5), (2020): e01937-20, doi:10.1128/mBio.01937-20.How microbial metabolism is translated into cellular reproduction under energy-limited settings below the seafloor over long timescales is poorly understood. Here, we show that microbial abundance increases an order of magnitude over a 5 million-year-long sequence in anoxic subseafloor clay of the abyssal North Atlantic Ocean. This increase in biomass correlated with an increased number of transcribed protein-encoding genes that included those involved in cytokinesis, demonstrating that active microbial reproduction outpaces cell death in these ancient sediments. Metagenomes, metatranscriptomes, and 16S rRNA gene sequencing all show that the actively reproducing community was dominated by the candidate phylum “Candidatus Atribacteria,” which exhibited patterns of gene expression consistent with fermentative, and potentially acetogenic, metabolism. “Ca. Atribacteria” dominated throughout the 8 million-year-old cored sequence, despite the detection limit for gene expression being reached in 5 million-year-old sediments. The subseafloor reproducing “Ca. Atribacteria” also expressed genes encoding a bacterial microcompartment that has potential to assist in secondary fermentation by recycling aldehydes and, thereby, harness additional power to reduce ferredoxin and NAD+. Expression of genes encoding the Rnf complex for generation of chemiosmotic ATP synthesis were also detected from the subseafloor “Ca. Atribacteria,” as well as the Wood-Ljungdahl pathway that could potentially have an anabolic or catabolic function. The correlation of this metabolism with cytokinesis gene expression and a net increase in biomass over the million-year-old sampled interval indicates that the “Ca. Atribacteria” can perform the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in millions-of-years-old anoxic sediments.This work was supported primarily by the Deutsche Forschungsgemeinschaft (DFG) project OR 417/1-1 granted to W.D.O. Preliminary work was supported by the Center for Dark Energy Biosphere Investigations project OCE-0939564 also granted to W.D.O. The expedition was funded by the US National Science Foundation through grant NSF-OCE-1433150 to S.D. and R.P. R.W.M. led the expedition. Shipboard microbiology efforts were supported by the Center for Dark Energy Biosphere Investigations (C-DEBI grant NSF-OCE-0939564). This is C-DEBI publication 545. This is a contribution of the Deep Carbon Observatory (DCO)
The Contribution of Water Radiolysis to Marine Sedimentary Life
Water radiolysis continuously produces H2 and oxidized chemicals in wet sediment and rock. Radiolytic H2 has been identified as the primary electron donor (food) for microorganisms in continental aquifers kilometers below Earth’s surface. Radiolytic products may also be significant for sustaining life in subseafloor sediment and subsurface environments of other planets. However, the extent to which most subsurface ecosystems rely on radiolytic products has been poorly constrained, due to incomplete understanding of radiolytic chemical yields in natural environments. Here we show that all common marine sediment types catalyse radiolytic H2 production, amplifying yields by up to 27X relative to pure water. In electron equivalents, the global rate of radiolytic H2 production in marine sediment appears to be 1-2% of the global organic flux to the seafloor. However, most organic matter is consumed at or near the seafloor, whereas radiolytic H2 is produced at all sediment depths. Comparison of radiolytic H2 consumption rates to organic oxidation rates suggests that water radiolysis is the principal source of biologically accessible energy for microbial communities in marine sediment older than a few million years. Where water permeates similarly catalytic material on other worlds, life may also be sustained by water radiolysis
Archaea dominate oxic subseafloor communities over multimillion-year time scales
Ammonia-oxidizing archaea (AOA) dominate microbial communities throughout oxic subseafloor sediment deposited over millions of years in the North Atlantic Ocean. Rates of nitrification correlated with the abundance of these dominant AOA populations, whose metabolism is characterized by ammonia oxidation, mixotrophic utilization of organic nitrogen, deamination, and the energetically efficient chemolithoautotrophic hydroxypropionate/hydroxybutyrate carbon fixation cycle. These AOA thus have the potential to couple mixotrophic and chemolithoautotrophic metabolism via mixotrophic deamination of organic nitrogen, followed by oxidation of the regenerated ammonia for additional energy to fuel carbon fixation. This metabolic feature likely reduces energy loss and improves AOA fitness under energy-starved, oxic conditions, thereby allowing them to outcompete other taxa for millions of years