53 research outputs found
Invasive Cx43^{high} sub-line of human prostate DU145 cells displays increased nanomechanical deformability
Connexin(Cx)43high cells are preferentially recruited to the invasive front of prostate cancer in vitro and in vivo. To address the involvement of Cx43 in the regulation of human prostate cancer DU145 cell invasiveness, we have analysed the nanoelasticity of invasive Cx43high sub-sets of DU145 cells by atomic force microscopy (AFM). The Cx43high DU145 cells displayed considerably higher susceptibility to mechanical distortions than the wild type DU145 cells. Transient Cx43 silencing had no effect on their elastic properties. Our data confirm the relationship between the invasive potential, Cx43 expression and nanoelasticity of the DU145 cells. However, they also show that Cx43 is not directly involved in the maintenance of DU145 invasive phenotype
Lithium attenuates TGF- β_1-induced fibroblasts to myofibroblasts transition in bronchial fibroblasts derived from asthmatic patients
Bronchial asthma is a chronic disorder accompanied by phenotypic transitions of bronchial epithelial cells, smooth muscle cells, and fibroblasts. Human bronchial fibroblasts (HBFs) derived from patients with diagnosed asthma display predestination towards TGF-β-induced phenotypic switches. Since the interference between TGF-β and GSK-3β signaling contributes to pathophysiology of chronic lung diseases, we investigated the effect of lithium, a nonspecific GSK-3β inhibitor, on TGF-β1-induced fibroblast to myofibroblast transition (FMT) in HBF and found that the inhibition of GSK-3β attenuates TGF-β1-induced FMT in HBF populations derived from asthmatic but not healthy donors. Cytoplasmically sequestrated β-catenin, abundant in TGF-β1/LiCl-stimulated asthmatic HBFs, most likely interacts with and inhibits the nuclear accumulation and signal transduction of Smad proteins. These data indicate that the specific cellular context determines FMT-related responses of HBFs to factors interfering with the TGF-β signaling pathway. They may also provide a mechanistic explanation for epidemiological data revealing coincidental remission of asthmatic syndromes and their recurrence upon the discontinuation of lithium therapy in certain psychiatric diseases
Fenofibrate interferes with the diapedesis of lung adenocarcinoma cells through the interference with Cx43/EGF-dependent intercellular signaling
Extravasation of circulating cancer cells is regulated by the intercellular/intracellular signaling pathways that locally impair the endothelial barrier function. Co-cultures of human umbilical vein endothelial cells (HUVECs) with lung adenocarcinoma A549 cells enabled us to identify these pathways and to quantify the effect of fenofibrate (FF) on their activity. A549 cells induced the disruption and local activation of endothelial continuum. These events were accompanied by epidermal growth factor (EGF) up-regulation in endothelial cells. Impaired A549 diapedesis and HUVEC activation were seen upon the chemical inhibition of connexin(Cx)43 functions, EGF/ERK1/2-dependent signaling, and RhoA/Rac1 activity. A total of 25 μM FF exerted corresponding effects on Cx43-mediated gap junctional coupling, EGF production, and ERK1/2 activation in HUVEC/A549 co-cultures. It also directly augmented endothelial barrier function via the interference with focal adhesion kinase (FAK)/RhoA/Rac1-regulated endothelial cell adhesion/contractility/motility and prompted the selective transmigration of epithelioid A549 cells. N-acetyl-L-cysteine abrogated FF effects on HUVEC activation, suggesting the involvement of PPARα-independent mechanism(s) in its action. Our data identify a novel Cx43/EGF/ERK1/2/FAK/RhoA/Rac1-dependent signaling axis, which determines the efficiency of lung cancer cell diapedesis. FF interferes with its activity and reduces the susceptibility of endothelial cells to A549 stimuli. These findings provide the rationale for the implementation of FF in the therapy of malignant lung cancers
- …