4,811 research outputs found
Sunyaev-Zel'dovich clusters reconstruction in multiband bolometer camera surveys
We present a new method for the reconstruction of Sunyaev-Zel'dovich (SZ)
galaxy clusters in future SZ-survey experiments using multiband bolometer
cameras such as Olimpo, APEX, or Planck. Our goal is to optimise SZ-Cluster
extraction from our observed noisy maps. We wish to emphasize that none of the
algorithms used in the detection chain is tuned on prior knowledge on the SZ
-Cluster signal, or other astrophysical sources (Optical Spectrum, Noise
Covariance Matrix, or covariance of SZ Cluster wavelet coefficients). First, a
blind separation of the different astrophysical components which contribute to
the observations is conducted using an Independent Component Analysis (ICA)
method. Then, a recent non linear filtering technique in the wavelet domain,
based on multiscale entropy and the False Discovery Rate (FDR) method, is used
to detect and reconstruct the galaxy clusters. Finally, we use the Source
Extractor software to identify the detected clusters. The proposed method was
applied on realistic simulations of observations. As for global detection
efficiency, this new method is impressive as it provides comparable results to
Pierpaoli et al. method being however a blind algorithm. Preprint with full
resolution figures is available at the URL:
w10-dapnia.saclay.cea.fr/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=728Comment: Submitted to A&A. 32 Pages, text onl
Surgical correction of scoliosis: Numerical analysis and optimization of the procedure
A previously developed model is used to numerically simulate real clinical cases of the surgical correction of scoliosis. This model consists of one-dimensional finite elements with spatial deformation in which (i) the column is represented by its axis; (ii) the vertebrae are assumed to be rigid; and (iii) the deformability of the column is concentrated in springs that connect the successive rigid elements. The metallic rods used for the surgical correction are modeled by beam elements with linear elastic behavior. To obtain the forces at the connections between the metallic rods and the vertebrae geometrically, non-linear finite element analyses are performed. The tightening sequence determines the magnitude of the forces applied to the patient column, and it is desirable to keep those forces as small as possible. In this study, a Genetic Algorithm optimization is applied to this model in order to determine the sequence that minimizes the corrective forces applied during the surgery. This amounts to find the optimal permutation of integers 1, ... , n, n being the number of vertebrae involved. As such, we are faced with a combinatorial optimization problem isomorph to the Traveling Salesman Problem. The fitness evaluation requires one computing intensive Finite Element Analysis per candidate solution and, thus, a parallel implementation of the Genetic Algorithm is developed
Recommended from our members
dendPoint: a web resource for dendrimer pharmacokinetics investigation and prediction
Abstract: Nanomedicine development currently suffers from a lack of efficient tools to predict pharmacokinetic behavior without relying upon testing in large numbers of animals, impacting success rates and development costs. This work presents dendPoint, the first in silico model to predict the intravenous pharmacokinetics of dendrimers, a commonly explored drug vector, based on physicochemical properties. We have manually curated the largest relational database of dendrimer pharmacokinetic parameters and their structural/physicochemical properties. This was used to develop a machine learning-based model capable of accurately predicting pharmacokinetic parameters, including half-life, clearance, volume of distribution and dose recovered in the liver and urine. dendPoint successfully predicts dendrimer pharmacokinetic properties, achieving correlations of up to r = 0.83 and Q2 up to 0.68. dendPoint is freely available as a user-friendly web-service and database at http://biosig.unimelb.edu.au/dendpoint. This platform is ultimately expected to be used to guide dendrimer construct design and refinement prior to embarking on more time consuming and expensive in vivo testing
Prognostic value of the central venous-to-arterial carbon dioxide difference for postoperative complications in high-risk surgical patients
Unique ergodicity of circle and interval exchange transformations with flips
We study the existence of transitive exchange maps with flips defined on the
unit circle. We provide a complete answer to the question of whether there
exists a transitive exchange map of the unit circle defined on n subintervals
and having f flips.Comment: 13 pages, 6 figures; notational changes, smaller figure
On the width of the last scattering surface
We discuss the physical effects of some accelerated world models on the width
of the last scattering surface (LSS) of the cosmic microwave background
radiation (CMBR). The models considered in our analysis are X-matter (XCDM) and
a Chaplygin type gas. The redshift of the LSS does not depend on the kind of
dark energy (if XCDM of Chaplygin). Further, for a Chaplygin gas, the width of
the LSS is also only weakly dependent on the kind of scenario (if we have dark
energy plus cold dark matter or the unified picture).Comment: 10 pages, 1 figure, 2 tables, accepted to IJMP
Finite element methods for nonlinear elastostatic problems in rubber elasticity
A number of finite element methods for the analysis of nonlinear problems in rubber elasticity are outlined. Several different finite element schemes are discussed. These include the augmented Lagrangian method, continuation or incremental loading methods, and associated Riks-type methods which have the capability of incorporating limit point behavior and bifurcations. Algorithms for the analysis of limit point behavior and bifurcations are described and the results of several numerical experiments are presented. In addition, a brief survey of some recent work on modelling contact and friction in elasticity problems is given. These results pertain to the use of new nonlocal and nonlinear friction laws
Entropy diversity in multi-objective particle swarm optimization
Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated
Pareto front for a given problem. Several approaches have been proposed to study the
convergence and performance of the algorithm, particularly by accessing the final results. In the present paper, a different approach is proposed, by using Shannon entropy to analyzethe MOPSO dynamics along the algorithm execution. The results indicate that Shannon entropy can be used as an indicator of diversity and convergence for MOPSO problems
Dynamical modelling of a genetic algorithm
This work addresses the signal propagation and the fractional-order dynamics during the evolution of a genetic algorithm (GA). In order to investigate the phenomena involved in the GA population evolution, the mutation is exposed to excitation perturbations during some generations and the corresponding fitness variations are evaluated. Three distinct fitness functions are used to study their influence in the GA dynamics. The input and output signals are studied revealing a fractional-order dynamic evolution, characteristic of a long-term system memory
- …