53 research outputs found

    Programmable multiport optical circuits in opaque scattering materials

    Get PDF
    We propose and experimentally verify a method to program the effective transmission matrix of general multiport linear optical circuits in random multiple-scattering materials by phase modulation of incident wavefronts. We demonstrate the power of our method by programming linear optical circuits in white paint layers with 2 inputs and 2 outputs, and 2 inputs and 3 outputs. Using interferometric techniques we verify our ability to program any desired phase relation between the outputs. The method works in a deterministic manner and can be directly applied to existing wavefront-shaping setups without the need of measuring a transmission matrix or to rely on sensitive interference measurements.Comment: 14 pages, 7 figure

    Programming balanced optical beam splitters in white paint

    Get PDF
    Wavefront shaping allows for ultimate control of light propagation in multiple-scattering media by adaptive manipulation of incident waves. We shine two separate wavefront-shaped beams on a layer of dry white paint to create two enhanced output speckle spots of equal intensity. We experimentally confirm by interference measurements that the output speckle spots are almost correlated like the two outputs of an ideal balanced beam splitter. The observed deviations from the phase behavior of an ideal beam splitter are analyzed with a transmission matrix model. Our experiments demonstrate that wavefront shaping in multiple-scattering media can be used to approximate the functionality of linear optical devices with multiple inputs and outputs
    corecore