1,708 research outputs found

    VLBA Polarization Observations of Markarian 421 After a Gamma-Ray High State

    Get PDF
    We present four high dynamic range, dual-circular polarization, Very Long Baseline Array (VLBA) observations at 22 GHz of Markarian 421, taken throughout the year following the source's unprecedented gamma-ray high state in early 2001. These four new VLBA observations are combined with data from our earlier 1999 paper and archival VLBA data-sets that have become available since 1999 to produce a combined 28 epoch VLBA data-set on Mrk 421 spanning the years 1994 to 2002. No new component associated with the 2001 flares was seen on the total intensity images, but the combined data-set allowed precise measurements of the apparent speeds of the existing components. The peak measured apparent speed was for component C5, which has an apparent speed of 0.1 +/- 0.02 c (H_0=71 km s^{-1} Mpc^{-1}, Omega_m=0.27, and Omega_Lambda=0.73). No counterjet is seen with a limit on the jet to counterjet brightness ratio J >~ 100. These observed VLBI properties of Markarian 421 are consistent with a jet with a bulk Lorentz factor of about 2 and an angle to the line-of-sight of about 1 degree, suggesting a jet that decelerates between the gamma-ray producing region and the parsec scale. The VLBI core and inner jet (component C7) have fractional polarizations of about 5%, and an electric vector position angle (EVPA) aligned with the jet axis. Component C5 (at 1.5 mas from the core) has a higher fractional polarization of about 15%, and an EVPA nearly orthogonal to the jet axis. Significant variability is detected in the EVPA of component C6, which at two of the four epochs shows an EVPA aligned with the jet axis, possibly a sign of propagating disturbances that are only visible on the polarization images. If these propagating disturbances are linked to the 2001 gamma-ray high state, then their inferred apparent speed is between 1 and 3 c.Comment: 11 pages, accepted to Ap

    VLBA monitoring of Mrk 421 at 15 GHz and 24 GHz during 2011

    Get PDF
    High-resolution radio observations are ideal for constraining the value of physical parameters in the inner regions of active-galactic-nucleus jets and complement results on multiwavelength (MWL) observations. This study is part of a wider multifrequency campaign targeting the nearby TeV blazar Markarian 421 (z=0.031), with observations in the sub-mm (SMA), optical/IR (GASP), UV/X-ray (Swift, RXTE, MAXI), and gamma rays (Fermi-LAT, MAGIC, VERITAS). We investigate the jet's morphology and any proper motions, and the time evolution of physical parameters such as flux densities and spectral index. The aim of our wider multifrequency campaign is to try to shed light on questions such as the nature of the radiating particles, the connection between the radio and gamma-ray emission, the location of the emitting regions and the origin of the flux variability. We consider data obtained with the Very Long Baseline Array (VLBA) over twelve epochs (one observation per month from January to December 2011) at 15 GHz and 24 GHz. We investigate the inner jet structure on parsec scales through the study of model-fit components for each epoch. The structure of Mrk 421 is dominated by a compact (~0.13 mas) and bright component, with a one-sided jet detected out to ~10 mas. We identify 5-6 components in the jet that are consistent with being stationary during the 12-month period studied here. Measurements of the spectral index agree with those of other works: they are fairly flat in the core region and steepen along the jet length. Significant flux-density variations are detected for the core component. From our results, we draw an overall scenario in which we estimate a viewing angle 2{\deg} < theta < 5{\deg} and a different jet velocity for the radio and the high-energy emission regions, such that the respective Doppler factors are {\delta}r ~3 and {\delta}h.e. ~14.Comment: 9 pages, 4 figure

    Current Results from the RRFID Kinematic Survey: Apparent Speeds from the First Five Years of Data

    Full text link
    We present current results from our ongoing project to study the parsec-scale relativistic jet kinematics of sources in the U.S. Naval Observatory's Radio Reference Frame Image Database (RRFID). The RRFID consists of snapshot observations using the VLBA plus up to 9 additional antennas at 8 and 2 GHz. The Image Database currently contains about 3000 images of 450 sources from 1994 to 2004, with some sources having images at 20 epochs or more. We have now completed analysis of the 8 GHz images for all sources observed at 3 or more epochs from 1994 to 1998. The completed analysis comprises 966 images of 87 sources, or an average of 11 epochs per source. Apparent jet speeds have been measured for these sources, and the resulting speed distribution has been compared with results obtained by other large VLBI surveys. The measured apparent speed distribution agrees with those found by the 2 cm survey and Caltech-Jodrell Bank (CJ) survey; however, when a source-by-source comparison is done with the 2 cm survey results, significant disagreement is found in the apparent speed measurements for a number of sources. This disagreement can be traced in most cases to either an insufficient time baseline for the current RRFID results, or to apparent component mis-identification in the 2 cm survey results caused by insufficient time sampling. These results emphasize the need for long time baselines and dense time sampling for multi-epoch monitoring of relativistic jets.Comment: 4 pages, To be published in the Proceedings of the 7th European VLBI Network Symposiu

    The Jets of TeV Blazars at Higher Resolution: 43 GHz and Polarimetric VLBA Observations from 2005-2009

    Full text link
    We present 23 new VLBA images of the six established TeV blazars Markarian 421, Markarian 501, H 1426+428, 1ES 1959+650, PKS 2155-304, and 1ES 2344+514, obtained from 2005 to 2009. Most images were obtained at 43 GHz, and they reveal the parsec-scale structures of three of these sources (1ES 1959+650, PKS 2155-304, and 1ES 2344+514) at factors of two to three higher resolution than has previously been attained. Most of the remaining images map the linear polarization structures at a lower frequency of 22 GHz. We discuss the transverse structures of the jets as revealed by the high-frequency and polarimetric imaging. The transverse structures include significant limb-brightening in Mrk 421, and spine-sheath structures in the electric vector position angle (EVPA) and fractional polarization distributions in Mrk 421, Mrk 501, and 1ES 1959+650. We use new measured component positions to update measured apparent jet speeds, in many cases significantly reducing the statistical error over previously published results. With the increased resolution at 43 GHz, we detect new components within 0.1-0.2 mas of the core in most of these sources. No motion is apparent in these new components over the time span of our observations, and we place upper limits on the apparent speeds of the components near the core of less than 2c. From those limits, we conclude that Gamma2 < Gamma1^{1/2} at about 10^5 Schwarzschild radii, where Gamma1 and Gamma2 are the bulk Lorentz factors in the TeV-emitting and 43 GHz-emitting regions, respectively, assuming that their velocity vectors are aligned.Comment: 22 pages, accepted to Ap

    Preliminary use of oxygen stable isotopes and the 1983 El Niño to assess the accuracy of aging black rockfish (Sebastes melanops)

    Get PDF
    Black rockfish (Sebastes melanops) range from California to Alaska and are found in both nearshore and shallow continental shelf waters (Love et al., 2002). Juveniles and subadults inhabit shallow water, moving deeper as they grow. Generally, adults are found at depths shallower than 55 meters and reportedly live up to 50 years. The species is currently managed by using information from an age-structured stock assessment model (Ralston and Dick, 2003)

    The Parsec-Scale Jets of the TeV Blazars H 1426+428, 1ES 1959+650, and PKS 2155-304: 2001-2004

    Get PDF
    We present Very Long Baseline Array (VLBA) observations of the TeV blazars H 1426+428, 1ES 1959+650, and PKS 2155-304 obtained during the years 2001 through 2004. We observed H 1426+428 at four epochs at 8 GHz, and found that its parsec-scale structure consisted of a ~17 mJy core and a single ~3 mJy jet component with an apparent speed of 2.09 +/- 0.53c. The blazar 1ES 1959+650 was observed at three epochs at frequencies of 15 and 22 GHz. Spectral index information from these dual-frequency observations was used to definitively identify the core of the parsec-scale structure. PKS 2155-304 was observed at a single epoch at 15 GHz with dual-circular polarization, and we present the first VLBI polarimetry image of this source. For 1ES 1959+650 and PKS 2155-304, the current observations are combined with the VLBA observations from our earlier paper to yield improved apparent speed measurements for these sources with greatly reduced measurement errors. The new apparent speed measured for component C2 in 1ES 1959+650 is 0.00 +/- 0.04c (stationary), and the new apparent speed measured for component C1 in PKS 2155-304 is 0.93 +/- 0.31c. We combine the new apparent speed measurements from this paper with the apparent speeds measured in TeV blazar jets from our earlier papers to form a current set of apparent speed measurements in TeV HBLs. The mean peak apparent pattern speed in the jets of the TeV HBLs is about 1c. We conclude the paper with a detailed discussion of the interpretation of the collected VLBA data on TeV blazars in the context of current theoretical models for the parsec-scale structure of TeV blazar jets.Comment: 16 pages, Astrophysical Journal, in pres

    Possible Detection of Apparent Superluminal inward motion in Markarian 421 after the Giant X-ray flare in February, 2010

    Full text link
    We report on the VLBI follow-up observations using the Japanese VLBI Network (JVN) array at 22 GHz for the largest X-ray flare of TeV blazar Mrk 421 that occurred in mid-February, 2010. The total of five epochs of observations were performed at intervals of about 20 days between March 7 and May 31, 2010. No new-born component associated with the flare was seen directly in the total intensity images obtained by our multi-epoch VLBI observations. However, one jet component located at ~1 mas north-west from the core was able to be identified, and its proper motion can be measured as -1.66+/-0.46 mas yr^-1, which corresponds to an apparent velocity of -3.48+/-0.97 c. Here, this negative velocity indicates that the jet component was apparently moving toward the core. As the most plausible explanation, we discuss that the apparent negative velocity was possibly caused by the ejection of a new component, which could not be resolved with our observations. In this case, the obtained Doppler factor of the new component is around 10 to 20, which is consistent with the ones typically estimated by model fittings of spectral energy distribution for this source.Comment: 9 pages, 6 figures, 3 tables, accepted for publication in Ap
    • 

    corecore