346 research outputs found

    Evaporating Very Small Grains as tracers of the UV radiation field in Photo-dissociation Regions

    Full text link
    Context. In photo-dissociation regions (PDRs), Polycyclic Aromatic Hydrocarbons (PAHs) could be produced by evaporation of Very Small Grains (VSGs) by the impinging UV radiation field from a nearby star. Aims. We investigate quantitatively the transition zone between evaporating Very Small Grains (eVSGs) and PAHs in several PDRs. Methods. We study the relative contribution of PAHs and eVSGs to the mid-IR emission in a wide range of excitation conditions. We fit the observed mid-IR emission of PDRs by using a set of template band emission spectra of PAHs, eVSGs and gas lines. The fitting tool PAHTAT (PAH Toulouse Astronomical Templates) is made available to the community as an IDL routine. From the results of the fit, we derive the fraction of carbon f_eVSG locked in eVSGs and compare it to the intensity of the local UV radiation field. Results. We show a clear decrease of f_eVSG with increasing intensity of the local UV radiation field, which supports the scenario of photo-destruction of eVSGs. Conversely, this dependence can be used to quantify the intensity of the UV radiation field for different PDRs, including non resolved ones. Conclusions. PAHTAT can be used to trace the intensity of the local UV radiation field in regions where eVSGs evaporate, which correspond to relatively dense (nH = [100, 10^5 ] cm-3) and UV irradiated PDRs (G0 = [100, 5x10^4]) where H2 emits in rotational lines.Comment: 13 pages, 11 figures. Accepted for publication in A&A. Typos correcte

    Mixed aliphatic and aromatic composition of evaporating very small grains in NGC 7023 revealed by the 3.4/3.3 Ό\mum ratio

    Full text link
    In photon-dominated regions (PDRs), UV photons from nearby stars lead to the evaporation of very small grains (VSGs) and the production of gas-phase polycyclic aromatic hydrocarbons (PAHs). Our goal is to achieve better insight into the composition and evolution of evaporating very small grains (eVSGs) and PAHs through analyzing the infrared (IR) aliphatic and aromatic emission bands. We combined spectro-imagery in the near- and mid-IR to study the spatial evolution of the emission bands in the prototypical PDR NGC 7023. We used near-IR spectra obtained with AKARI to trace the evolution of the 3.3Ό\mum and 3.4Ό\mum bands, which are associated with aromatic and aliphatic C-H bonds on PAHs. The spectral fitting involves an additional broad feature centred at 3.45Ό\mum. Mid-IR observations obtained with Spitzer are used to discriminate the signatures of eVSGs, neutral and cationic PAHs. We correlated the spatial evolution of all these bands with the intensity of the UV field to explore the processing of their carriers. The intensity of the 3.45Ό\mum plateau shows an excellent correlation with that of the 3.3Ό\mum aromatic band (correlation coefficient R = 0.95), indicating that the plateau is dominated by the emission from aromatic bonds. The ratio of the 3.4Ό\mum and 3.3Ό\mum band intensity (I3.4/I3.3I_{3.4}/I_{3.3}) decreases by a factor of 4 at the PDR interface from the more UV-shielded to the more exposed layers. The transition region between the aliphatic and aromatic material is found to correspond spatially with the transition zone between neutral PAHs and eVSGs. We conclude that the photo-processing of eVSGs leads to the production of PAHs with attached aliphatic sidegroups that are revealed by the 3.4Ό\mum emission band. Our analysis provides evidence for the presence of very small grains of mixed aromatic and aliphatic composition in PDRs.Comment: Accepted for publication in A&A. Abstract abridged, language editing applied in v

    Polycyclic aromatic hydrocarbons and molecular hydrogen in oxygen-rich planetary nebulae: the case of NGC6720

    Full text link
    Evolved stars are primary sources for the formation of polycyclic aromatic hydrocarbons (PAHs) and dust grains. Their circumstellar chemistry is usually designated as either oxygen-rich or carbon-rich, although dual-dust chemistry objects, whose infrared spectra reveal both silicate- and carbon-dust features, are also known. The exact origin and nature of this dual-dust chemistry is not yet understood. Spitzer-IRS mid-infrared spectroscopic imaging of the nearby, oxygen-rich planetary nebula NGC6720 reveals the presence of the 11.3 micron aromatic (PAH) emission band. It is attributed to emission from neutral PAHs, since no band is observed in the 7 to 8 micron range. The spatial distribution of PAHs is found to closely follow that of the warm clumpy molecular hydrogen emission. Emission from both neutral PAHs and warm H2 is likely to arise from photo-dissociation regions associated with dense knots that are located within the main ring. The presence of PAHs together with the previously derived high abundance of free carbon (relative to CO) suggest that the local conditions in an oxygen-rich environment can also become conducive to in-situ formation of large carbonaceous molecules, such as PAHs, via a bottom-up chemical pathway. In this scenario, the same stellar source can enrich the interstellar medium with both oxygen-rich dust and large carbonaceous molecules.Comment: Accepted by MNRAS. 5 page

    Variations in solar wind fractionation as seen by ACE/SWICS over a solar cycle and the implications for Genesis Mission results

    Get PDF
    We use ACE/SWICS elemental composition data to compare the variations in solar wind fractionation as measured by SWICS during the last solar maximum (1999-2001), the solar minimum (2006-2009) and the period in which the Genesis spacecraft was collecting solar wind (late 2001 - early 2004). We differentiate our analysis in terms of solar wind regimes (i.e. originating from interstream or coronal hole flows, or coronal mass ejecta). Abundances are normalized to the low-FIP ion magnesium to uncover correlations that are not apparent when normalizing to high-FIP ions. We find that relative to magnesium, the other low-FIP elements are measurably fractionated, but the degree of fractionation does not vary significantly over the solar cycle. For the high-FIP ions, variation in fractionation over the solar cycle is significant: greatest for Ne/Mg and C/Mg, less so for O/Mg, and the least for He/Mg. When abundance ratios are examined as a function of solar wind speed, we find a strong correlation, with the remarkable observation that the degree of fractionation follows a mass-dependent trend. We discuss the implications for correcting the Genesis sample return results to photospheric abundances.Comment: Accepted for publication in Ap

    Kinematics of the ionized-to-neutral interfaces in Monoceros R2

    Full text link
    Context. Monoceros R2 (Mon R2), at a distance of 830 pc, is the only ultra-compact H ii region (UC H ii) where its associated photon-dominated region (PDR) can be resolved with the Herschel Space Observatory. Aims. Our aim is to investigate observationally the kinematical patterns in the interface regions (i.e., the transition from atomic to molecular gas) associated with Mon R2. Methods. We used the HIFI instrument onboard Herschel to observe the line profiles of the reactive ions CH+, OH+ and H2O+ toward different positions in Mon R2. We derive the column density of these molecules and compare them with gas-phase chemistry models. Results. The reactive ion CH+ is detected both in emission (at central and red-shifted velocities) and in absorption (at blue-shifted velocities). OH+ is detected in absorption at both blue- and red-shifted velocities, with similar column densities. H2O+ is not detected at any of the positions, down to a rms of 40 mK toward the molecular peak. At this position, we find that the OH+ absorption originates in a mainly atomic medium, and therefore is associated with the most exposed layers of the PDR. These results are consistent with the predictions from photo-chemical models. The line profiles are consistent with the atomic gas being entrained in the ionized gas flow along the walls of the cavity of the H ii region. Based on this evidence, we are able to propose a new geometrical model for this region. Conclusions. The kinematical patterns of the OH+ and CH+ absorption indicate the existence of a layer of mainly atomic gas for which we have derived, for the first time, some physical parameters and its dynamics.Comment: 6 pages, 5 figures. Accepted for publication in A&

    The chemistry and spatial distribution of small hydrocarbons in UV-irradiated molecular clouds: the Orion Bar PDR

    Full text link
    We study the spatial distribution and chemistry of small hydrocarbons in the Orion Bar PDR. We used the IRAM-30m telescope to carry out a millimetre line survey towards the Orion Bar edge, complemented with ~2'x2' maps of the C2H and c-C3H2 emission. We analyse the excitation of the detected hydrocarbons and constrain the physical conditions of the emitting regions with non-LTE radiative transfer models. We compare the inferred column densities with updated gas-phase photochemical models including 13CCH and C13CH isotopomer fractionation. ~40% of the lines in the survey arise from hydrocarbons (C2H, C4H, c-C3H2, c-C3H, C13CH, 13CCH, l-C3H and l-H2C3). We detect new lines from l-C3H+ and improve its rotational spectroscopic constants. Anions or deuterated hydrocarbons are not detected: [C2D]/[C2H]<0.2%, [C2H-]/[C2H]<0.007% and [C4H-]/[C4H]<0.05%. Our gas-phase models can reasonably match the observed column densities of most hydrocarbons (within factors <3). Since the observed spatial distribution of the C2H and c-C3H2 emission is similar but does not follow the PAH emission, we conclude that, in high UV-flux PDRs, photodestruction of PAHs is not a necessary requirement to explain the observed abundances of the smallest hydrocarbons. Instead, gas-phase endothermic reactions (or with barriers) between C+, radicals and H2 enhance the formation of simple hydrocarbons. Observations and models suggest that the [C2H]/[c-C3H2] ratio (~32 at the PDR edge) decreases with the UV field attenuation. The observed low cyclic-to-linear C3H column density ratio (<3) is consistent with a high electron abundance (Xe) PDR environment. In fact, the poorly constrained Xe gradient influences much of the hydrocarbon chemistry in the more UV-shielded gas. We propose that reactions of C2H isotopologues with 13C+ and H atoms can explain the observed [C13CH]/[13CCH]=1.4(0.1) fractionation level.Comment: 30 pages, 23 figures, 15 tables. Accepted for publication in A&A (English edited, abstract abridged

    Mid-infrared PAH and H2 emission as a probe of physical conditions in extreme PDRs

    Full text link
    Mid-infrared (IR) observations of polycyclic aromatic hydrocarbons (PAHs) and molecular hydrogen emission are a potentially powerful tool to derive physical properties of dense environments irradiated by intense UV fields. We present new, spatially resolved, \emph{Spitzer} mid-IR spectroscopy of the high UV-field and dense photodissocation region (PDR) around Monoceros R2, the closest ultracompact \hII region, revealing the spatial structure of ionized gas, PAHs and H2_2 emissions. Using a PDR model and PAH emission feature fitting algorithm, we build a comprehensive picture of the physical conditions prevailing in the region. We show that the combination of the measurement of PAH ionization fraction and of the ratio between the H2_2 0-0 S(3) and S(2) line intensities, respectively at 9.7 and 12.3 ÎŒ\mum, allows to derive the fundamental parameters driving the PDR: temperature, density and UV radiation field when they fall in the ranges T=250−1500T = 250-1500 K, nH=104−106n_H=10^4-10^6cm−3^{-3}, G0=103−105G_0=10^3-10^5 respectively. These mid-IR spectral tracers thus provide a tool to probe the similar but unresolved UV-illuminated surface of protoplanetary disks or the nuclei of starburst galaxies.Comment: Accepted for publication in ApJ Letter

    The first CO+ image: Probing the HI/H2 layer around the ultracompact HII region Mon R2

    Full text link
    The CO+ reactive ion is thought to be a tracer of the boundary between a HII region and the hot molecular gas. In this study, we present the spatial distribution of the CO+ rotational emission toward the Mon R2 star-forming region. The CO+ emission presents a clumpy ring-like morphology, arising from a narrow dense layer around the HII region. We compare the CO+ distribution with other species present in photon-dominated regions (PDR), such as [CII] 158 mm, H2 S(3) rotational line at 9.3 mm, polycyclic aromatic hydrocarbons (PAHs) and HCO+. We find that the CO+ emission is spatially coincident with the PAHs and [CII] emission. This confirms that the CO+ emission arises from a narrow dense layer of the HI/H2 interface. We have determined the CO+ fractional abundance, relative to C+ toward three positions. The abundances range from 0.1 to 1.9x10^(-10) and are in good agreement with previous chemical model, which predicts that the production of CO+ in PDRs only occurs in dense regions with high UV fields. The CO+ linewidth is larger than those found in molecular gas tracers, and their central velocity are blue-shifted with respect to the molecular gas velocity. We interpret this as a hint that the CO+ is probing photo-evaporating clump surfaces.Comment: The main text has 4 pages, 2 pages of Appendix, 4 figures, 1 table. Accepted for publication in Astronomy and Astrophysics letter

    Deuteration around the ultracompact HII region Mon R2

    Full text link
    The massive star-forming region Mon R2 hosts the closest ultra-compact HII region that can be spatially resolved with current single-dish telescopes. We used the IRAM-30m telescope to carry out an unbiased spectral survey toward two important positions (namely IF and MP2), in order to studying the chemistry of deuterated molecules toward Mon R2. We found a rich chemistry of deuterated species at both positions, with detections of C2D, DCN, DNC, DCO+, D2CO, HDCO, NH2D, and N2D+ and their corresponding hydrogenated species and isotopologs. Our high spectral resolution observations allowed us to resolve three velocity components: the component at 10 km/s is detected at both positions and seems associated with the layer most exposed to the UV radiation from IRS 1; the component at 12 km/s is found toward the IF position and seems related to the molecular gas; finally, a component at 8.5 km/s is only detected toward the MP2 position, most likely related to a low-UV irradiated PDR. We derived the column density of all the species, and determined the deuterium fractions (Dfrac). The values of Dfrac are around 0.01 for all the observed species, except for HCO+ and N2H+ which have values 10 times lower. The values found in Mon R2 are well explained with pseudo-time-dependent gas-phase model in which deuteration occurs mainly via ion-molecule reactions with H2D+, CH2D+ and C2HD+. Finally, the [H13CN]/[HN13C] ratio is very high (~11) for the 10 km/s component, which also agree with our model predictions for an age of ~0.01-0.1 Myr. The deuterium chemistry is a good tool for studying star-forming regions. The low-mass star-forming regions seem well characterized with Dfrac(N2H+) or Dfrac(HCO+), but it is required a complete chemical modeling to date massive star-forming regions, because the higher gas temperature together with the rapid evolution of massive protostars.Comment: 14 pages of manuscript, 17 pages of apendix, 7 figures in the main text, accepted for publication in A&
    • 

    corecore