403 research outputs found

    Radiative transfer in a clumpy universe: IV. New synthesis models of the cosmic UV/X-ray background

    Full text link
    We present improved synthesis models of the evolving spectrum of the UV/X-ray diffuse background, updating and extending our previous results. Five new main components are added to our radiative transfer code CUBA: (1) the sawtooth modulation of the background intensity from resonant line absorption in the Lyman series of cosmic hydrogen and helium; (2) the X-ray emission from obscured and unobscured quasars; (3) a piecewise parameterization of the distribution in redshift and column density of intergalactic absorbers that fits recent measurements of the mean free path of 1 ryd photons; (4) an accurate treatment of the photoionization structure of absorbers; and (5) the UV emission from star-forming galaxies at all redshifts. We provide tables of the predicted HI and HeII photoionization and photoheating rates for use, e.g., in cosmological hydrodynamics simulations of the Lya forest, and a new metallicity-dependent calibration to the UV luminosity density-star formation rate density relation. A "minimal cosmic reionization model" is also presented in which the galaxy UV emissivity traces recent determinations of the cosmic history of star formation, the luminosity-weighted escape fraction of hydrogen-ionizing radiation increases rapidly with lookback time, the clumping factor of the high-redshift intergalactic medium evolves following the results of recent hydrodynamic simulations, and Population III stars and miniquasars make a negligible contribution to the metagalactic flux. The model provides a good fit to the hydrogen-ionization rates inferred from flux decrement and proximity effect measurements, predicts that cosmological HII (HeIII) regions overlap at redshift 6.7 (2.8), and yields an optical depth to Thomson scattering that is in agreement with WMAP results. (Abridged)Comment: 28 pages, 17 figures, accepted for publication in The Astrophysical Journa

    Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Full text link
    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z<4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized HII bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from "normal" galaxies at z>6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct HeI photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between HII cavities increases above the temperature of the cosmic microwave background (CMB) only at z0.1. Therefore, in this scenario, it is only at relatively late epochs that the bulk of neutral intergalactic hydrogen may be observable in 21-cm emission against the CMB.Comment: 14 pages, 8 figures, accepted for publication in The Astrophysical Journa
    corecore