222 research outputs found

    Culture of human cell lines by a pathogen-inactivated human platelet lysate

    Get PDF
    Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety

    Human sinusoidal subendothelial cells regulate homing and invasion of circulating metastatic prostate cancer cells to bone marrow

    Get PDF
    : Subendothelial cells (pericytes) are the clonogenic, multipotent and self-renewing skeletal stem cells (SSCs) found in bone marrow (BM) stroma. They express genes maintaining hematopoietic stem cell (HMC) niche identity and, transplanted in immunocompromised mice, organize the hematopoietic microenvironment (HME) generating humanized bone/BM ossicles. To create a mouse model of hematogenous metastasis of human prostate cancer (PC) cells to human bone/BM, we injected PC cells in the blood circulatory system of Severe Combined Immunodeficiency (SCID)/beige mice bearing heterotopic ossicles. Results indicate that PC cells could efficiently home to mice-implanted extraskeletal BM ossicles, but were not able to colonize mice skeletal segments. In humanized bone/BM ossicles, early foci of PC cells occupied a perisinusoidal position, in close contact with perivascular stromal cells. These findings demonstrate the importance of the SSC compartment in recreating a suitable environment to metastatic PC cells. Our data support the hypothesis that BM SSCs committed to a pericyte fate can specify for homing niches of PC cells, suggesting an involvement of specific interactions with subendothelial stromal cells in extravasation of circulating metastatic PC cells to BM

    Interleukin-21 induces the differentiation of human umbilical cord blood CD34-lineage- cells into pseudomature lytic NK cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Umbilical cord blood (UCB) is enriched with transplantable CD34<sup>+ </sup>cells. In addition to CD34-expressing haematopoietic stem cells (HSC), human UCB contains a rare population of CD34<sup>-</sup>lineage<sup>- </sup>cells endowed with the ability to differentiate along the T/NK pathway in response to interleukin (IL)-15 and a stromal cell support. IL-21 is a crucial regulator of NK cell function, whose influence on IL-15-induced differentiation of CD34<sup>-</sup>lineage<sup>- </sup>cells has not been investigated previously. The present study was designed and conducted to address whether IL-21 might replace the stromal cell requirements and foster the IL-15-induced NK differentiation of human UCB CD34<sup>-</sup>lineage<sup>- </sup>cells.</p> <p>Results</p> <p>CD34<sup>-</sup>lineage<sup>- </sup>cells were maintained in liquid culture with Flt3-L and SCF, with the addition of IL-15 and IL-21, either alone or in combination. Cultures were established in the absence of feeder cells or serum supplementation. Cytokine-treated cells were used to evaluate cell surface phenotype, expression of molecular determinants of lymphoid/NK cell differentiation, secretion of IFN-γ, GM-CSF, TNF-α and CCL3/MIP-1α, and cytolytic activity against NK-sensitive tumour cell targets. CD34<sup>-</sup>lineage<sup>- </sup>cells proliferated vigorously in response to IL-15 and IL-21 but not to IL-21 alone, and up-regulated phosphorylated Stat1 and Stat3 proteins. CD34<sup>-</sup>lineage<sup>- </sup>cells expanded by IL-21 in combination with IL-15 acquired lymphoid morphology and killer-cell immunoglobulin-like receptor (KIR)<sup>-</sup>CD56<sup>+</sup>CD16<sup>-/+ </sup>phenotype, consistent with pseudo-mature NK cells. IL-21/IL-15-differentiated cells expressed high levels of mRNA for Bcl-2, GATA-3 and Id2, a master switch required for NK-cell development, and harboured un-rearranged TCRγ genes. From a functional standpoint, IL-21/IL-15-treated cells secreted copious amounts of IFN-γ, GM-CSF and CCL3/MIP-1α, and expressed cell surface CD107a upon contact with NK-sensitive tumour targets, a measure of exocytosis of NK secretory granules.</p> <p>Conclusion</p> <p>This study underpins a novel role for IL-21 in the differentiation of pseudo-mature lytic NK cells in a synergistic context with IL-15, and identifies a potential strategy to expand functional NK cells for immunotherapy.</p

    Triple peptide vaccination as consolidation treatment in women affected by ovarian and breast cancer: clinical and immunological data of a phase I/II clinical trial

    Get PDF
    Vaccination with priming and expansion of tumour reacting T cells is an important therapeutic option to be used in combination with novel checkpoint inhibitors to increase the specificity of the T cell infiltrate and the efficacy of the treatment. In this phase I/II study, 14 high-risk disease-free ovarian (OC) and breast cancer (BC) patients after completion of standard therapies were vaccinated with MUC1, ErbB2 and carcinoembryonic antigen (CEA) HLA-A2+-restricted peptides and Montanide. Patients were subjected to 6 doses of vaccine every two weeks and a recall dose after 3 months. ECOG grade 2 toxicity was observed at the injection site. Eight out of 14 patients showed specific CD8+ T cells to at least one antigen. None of 4 patients vaccinated for compassionate use showed a CD8 activation. An OC patient who suffered from a lymph nodal recurrence, showed specific anti-ErbB2 CD8+ T cells in the bulky aortic lymph nodes suggesting homingof the activated T cells. Results confirm that peptide vaccination strategy is feasible, safe and well tolerated. In particular OC patients appear to show a higher response rate compared to BC patients. Vaccination generates a long-lasting immune response, which is strongly enhanced by recall administrations. The clinical outcome of patients enrolled in the trial appears favourable, having registered no deceased patients with a minimum follow-up of 8 years. These promising data, in line with the results of similar studies, the high compliance of patients observed and the favourable toxicity profile, support future trials of peptide vaccination in clinically disease-free patients who have completed standard treatments

    Thymoglobulin, interferon-γ and interleukin-2 efficiently expand cytokine-induced killer (CIK) cells in clinical-grade cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytokine-induced killer (CIK) cells are typically differentiated <it>in vitro </it>with interferon (IFN)-γ and αCD3 monoclonal antibodies (mAb), followed by the repeated provision of interleukin (IL)-2. It is presently unknown whether thymoglobulin (TG), a preparation of polyclonal rabbit γ immunoglobulins directed against human thymocytes, can improve the generation efficiency of CIK cells compared with αCD3 mAb in a clinical-grade culture protocol.</p> <p>Methods</p> <p>Peripheral blood mononuclear cells (PBMC) from 10 healthy donors and 4 patients with solid cancer were primed with IFN-γ on day 0 and low (50 ng/ml), intermediate (250 ng/ml) and high (500 ng/ml) concentrations of either αCD3 mAb or TG on day 1, and were fed with IL-2 every 3 days for 21 days. Aliquots of cells were harvested weekly to monitor the expression of representative members of the killer-like immunoglobulin receptor (KIR), NK inhibitory receptor, NK activating receptor and NK triggering receptor families. We also quantified the frequency of <it>bona fide </it>regulatory T cells (Treg), a T-cell subset implicated in the down-regulation of anti-tumor immunity, and tested the <it>in vitro </it>cytotoxic activity of CIK cells against NK-sensitive, chronic myeloid leukaemia K562 cells.</p> <p>Results</p> <p>CIK cells expanded more vigorously in cultures supplemented with intermediate and high concentrations of TG compared with 50 ng/ml αCD3 mAb. TG-driven CIK cells expressed a constellation of NK activating/inhibitory receptors, such as CD158a and CD158b, NKp46, NKG2D and NKG2A/CD94, released high quantities of IL-12p40 and efficiently lysed K562 target cells. Of interest, the frequency of Treg cells was lower at any time-point compared with PBMC cultures nurtured with αCD3 mAb. Cancer patient-derived CIK cells were also expanded after priming with TG, but they expressed lower levels of the NKp46 triggering receptor and NKG2D activating receptor, thus manifesting a reduced ability to lyse K562 cells.</p> <p>Conclusions</p> <p>TG fosters the generation of functional CIK cells with no concomitant expansion of tumor-suppressive Treg cells. The culture conditions described herein should be applicable to cancer-bearing individuals, although the differentiation of fully functional CIK cells may be hindered in patients with advanced malignancies.</p

    Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample

    Get PDF
    We describe a semiquantitative RT-PCR protocol optimized in our laboratory to extract RNA from as little as 10,000 cells and to measure the expression levels of several target mRNAs from each sample. This procedure was optimized on the human erythroleukemia cell line TF-1 but was successfully used on primary cells and on different cell lines. We describe the detailed procedure for the analysis of Bcl-2 levels. Aldolase A was used as an internal control to normalize for sample to sample variations in total RNA amounts and for reaction efficiency. As for all quantitative techniques, great care must be taken in all optimization steps: the necessary controls to ensure a rough quantitative (semi-quantitative) analysis are described here, together with an example from a study on the effects of TGF-β1 in TF-1 cells

    A prospective, active haemovigilance study with combined cohort analysis of 19 175 transfusions of platelet components prepared with amotosalen-UVA photochemical treatment

    Get PDF
    Background and Objectives: A photochemical treatment process (PCT) utilizing amotosalen and UVA light (INTERCEPT™ Blood System) has been developed for inactivation of viruses, bacteria, parasites and leucocytes that can contaminate blood components intended for transfusion. The objective of this study was to further characterize the safety profile of INTERCEPT-treated platelet components (PCT-PLT) administered across a broad patient population. Materials and Methods: This open-label, observational haemovigilance programme of PCT-PLT transfusions was conducted in 21 centres in 11 countries. All transfusions were monitored for adverse events within 24 h post-transfusion and for serious adverse events (SAEs) up to 7 days post-transfusion. All adverse events were assessed for severity (Grade 0–4), and causal relationship to PCT-PLT transfusion. Results: Over the course of 7 years in the study centres, 4067 patients received 19 175 PCT-PLT transfusions. Adverse events were infrequent, and most were of Grade 1 severity. On a per-transfusion basis, 123 (0·6%) were classified an acute transfusion reaction (ATR) defined as an adverse event related to the transfusion. Among these ATRs, the most common were chills (77, 0·4%) and urticaria (41, 0·2%). Fourteen SAEs were reported, of which 2 were attributed to platelet transfusion (<0·1%). No case of transfusion-related acute lung injury, transfusion-associated graft-versus-host disease, transfusion-transmitted infection or death was attributed to the transfusion of PCT-PLT. Conclusion: This longitudinal haemovigilance safety programme to monitor PCT-PLT transfusions demonstrated a low rate of ATRs, and a safety profile consistent with that previously reported for conventional platelet components.publishedVersio

    Transplant results in adults with Fanconi anaemia

    Get PDF

    Red blood cell alloimmunization in sickle cell disease and in thalassaemia: Current status, future perspectives and potential role of molecular typing

    No full text
    Red blood cell (RBC) transfusions are a milestone in the treatment for sickle cell anaemia (SSA) and for thalassaemia. RBC alloimmunization remains a major challenge of chronic transfusion therapy, and it can lead to adverse life-threatening events. The alloimmunization risk could depend on multiple factors such as the number of transfusions and, most of all, the genetic background. Different ethnic groups are predisposed to immunization because of a significant degree of RBC antigenic mismatch between donor and recipient. There is no universal agreement and standards for the most appropriate selection of RBC units in chronically transfused subjects. Current practice only deals with compatibility of ABO, Rh and K antigens. Molecular RBC antigenic matching extended to other blood group systems is an innovative strategy to ensure a better quality and effectiveness of transfusion therapy. © 2013 International Society of Blood Transfusion
    • …
    corecore