318 research outputs found
First principles theory of the EPR g-tensor in solids: defects in quartz
A theory for the reliable prediction of the EPR g-tensor for paramagnetic
defects in solids is presented. It is based on density functional theory and on
the gauge including projector augmented wave (GIPAW) approach to the
calculation of all-electron magnetic response. The method is validated by
comparison with existing quantum chemical and experimental data for a selection
of diatomic radicals. We thenperform the first prediction of EPR -tensors in the solid state and find the results to be in excellent agreement
with experiment for the and substitutional P defect centers in quartz.Comment: 5 pages, 4 table
Pressure-induced s-band ferromagnetism in alkali metals
First-principles density-functional-theory calculations show that compression
of alkali metals stabilizes open structures with localized interstitial
electrons which may exhibit a Stoner-type instability towards ferromagnetism.
We find ferromagnetic phases of the lithium-IV-type, simple cubic, and simple
hexagonal structures in the heavier alkali metals, which may be described as
s-band ferromagnets. We predict that the most stable phases of potassium at low
temperatures and pressures around 20 GPa are ferromagnets.Comment: 5 pages, 3 figure
Structural Properties of Lanthanide and Actinide Compounds within the Plane Wave Pseudopotential Approach
[[abstract]]We show that plane wave ultrasoft pseudopotential methods readily extend to the calculation of the structural properties of lanthanide and actinide containing compounds. This is demonstrated through a series of calculations performed on UO, UO2, UO3, U3O8, UC2, α-CeC2, CeB6, CeSe, CeO2, NdB6, TmOI, LaBi, LaTiO3, YbO, and elemental Lu.[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
Hydrogen/nitrogen/oxygen defect complexes in silicon from computational searches
Point defect complexes in crystalline silicon composed of hydrogen, nitrogen,
and oxygen atoms are studied within density-functional theory (DFT). Ab initio
Random Structure Searching (AIRSS) is used to find low-energy defect
structures. We find new lowest-energy structures for several defects: the
triple-oxygen defect, {3O}, triple oxygen with a nitrogen atom, {N, 3O}, triple
nitrogen with an oxygen atom, {3N,O}, double hydrogen and an oxygen atom,
{2H,O}, double hydrogen and oxygen atoms, {2H,2O} and four
hydrogen/nitrogen/oxygen complexes, {H,N,O}, {2H,N,O}, {H,2N,O} and {H,N,2O}.
We find that some defects form analogous structures when an oxygen atom is
replaced by a NH group, for example, {H,N,2O} and {3O}, and {H,N} and {O}. We
compare defect formation energies obtained using different oxygen chemical
potentials and investigate the relative abundances of the defects.Comment: 9 pages, 13 figure
- …