1,102 research outputs found

    Lipschitz normal embedding among superisolated singularities

    Full text link
    Any germ of a complex analytic space is equipped with two natural metrics: the outer metric induced by the hermitian metric of the ambient space and the inner metric, which is the associated riemannian metric on the germ. A complex analytic germ is said Lipschitz normally embedded (LNE) if its outer and inner metrics are bilipschitz equivalent. LNE seems to be fairly rare among surface singularities; the only known LNE surface germs outside the trivial case (straight cones) are the minimal singularities. In this paper, we show that a superisolated hypersurface singularity is LNE if and only if its projectivized tangent cone has only ordinary singularities. This provides an infinite family of LNE singularities which is radically different from the class of minimal singularities.Comment: 17 pages, 8 figures. Minor errors and misprints corrected. Comments are welcome

    Meromorphic functions, bifurcation sets and fibred links

    Full text link
    We give a necessary condition for a meromorphic function in several variables to give rise to a Milnor fibration of the local link (respectively of the link at infinity). In the case of two variables we give some necessary and sufficient conditions for the local link (respectively the link at infinity) to be fibred.Comment: 13 pages, improved redactio

    Lipschitz geometry of complex surfaces: analytic invariants and equisingularity

    Full text link
    We prove that the outer Lipschitz geometry of a germ (X,0)(X,0) of a normal complex surface singularity determines a large amount of its analytic structure. In particular, it follows that any analytic family of normal surface singularities with constant Lipschitz geometry is Zariski equisingular. We also prove a strong converse for families of normal complex hypersurface singularities in C3\mathbb C^3: Zariski equisingularity implies Lipschitz triviality. So for such a family Lipschitz triviality, constant Lipschitz geometry and Zariski equisingularity are equivalent to each other.Comment: Added a new section 10 to correct a minor gap and simplify some argument

    Lipschitz geometry does not determine embedded topological type

    Full text link
    We investigate the relationships between the Lipschitz outer geometry and the embedded topological type of a hypersurface germ in (Cn,0)(\mathbb C^n,0). It is well known that the Lipschitz outer geometry of a complex plane curve germ determines and is determined by its embedded topological type. We prove that this does not remain true in higher dimensions. Namely, we give two normal hypersurface germs (X1,0)(X_1,0) and (X2,0)(X_2,0) in (C3,0)(\mathbb C^3,0) having the same outer Lipschitz geometry and different embedded topological types. Our pair consist of two superisolated singularities whose tangent cones form an Alexander-Zariski pair having only cusp-singularities. Our result is based on a description of the Lipschitz outer geometry of a superisolated singularity. We also prove that the Lipschitz inner geometry of a superisolated singularity is completely determined by its (non embedded) topological type, or equivalently by the combinatorial type of its tangent cone.Comment: A missing argument was added in the proof of Proposition 2.3 (final 4 paragraphs are new

    Inner geometry of complex surfaces: a valuative approach

    Full text link
    Given a complex analytic germ (X,0)(X, 0) in (Cn,0)(\mathbb C^n, 0), the standard Hermitian metric of Cn\mathbb C^n induces a natural arc-length metric on (X,0)(X, 0), called the inner metric. We study the inner metric structure of the germ of an isolated complex surface singularity (X,0)(X,0) by means of an infinite family of numerical analytic invariants, called inner rates. Our main result is a formula for the Laplacian of the inner rate function on a space of valuations, the non-archimedean link of (X,0)(X,0). We deduce in particular that the global data consisting of the topology of (X,0)(X,0), together with the configuration of a generic hyperplane section and of the polar curve of a generic plane projection of (X,0)(X,0), completely determine all the inner rates on (X,0)(X,0), and hence the local metric structure of the germ. Several other applications of our formula are discussed in the paper.Comment: Proposition 5.3 strengthened, exposition improved, some typos corrected, references updated. 42 pages and 10 figures. To appear in Geometry & Topolog
    corecore