36 research outputs found


    Get PDF
    The flipped classroom is gaining more attention than ever before due to the pandemic of the COVID-19, by which online learning becomes a must in many countries and territories all over the world. The flipped model is a combination of online and face-to-face learning in which students watch instructional videos and do certain comprehension tasks at home prior to in-class lessons. To our knowledge, few studies have been conducted to explore the impact of flipped classrooms for teaching English reading skills in the high school context. The current experimental study has been conducted in a high school in the Mekong Delta with 52 students at Grade 11 in a high school in the Mekong Delta of Vietnam. Students were assigned to watch videos of instructions for 6 reading lessons in the English Grade 11 Textbook for 10 weeks. Learners’ reading comprehension performance and attitudes are compared between the control group and the experimental group. The findings reveal some interesting implications for Vietnamese teachers teaching English at high school. Article visualizations

    The mTOR Signalling Pathway in Human Cancer

    Get PDF
    The conserved serine/threonine kinase mTOR (the mammalian target of rapamycin), a downstream effector of the PI3K/AKT pathway, forms two distinct multiprotein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to rapamycin, activates S6K1 and 4EBP1, which are involved in mRNA translation. It is activated by diverse stimuli, such as growth factors, nutrients, energy and stress signals, and essential signalling pathways, such as PI3K, MAPK and AMPK, in order to control cell growth, proliferation and survival. mTORC2 is considered resistant to rapamycin and is generally insensitive to nutrients and energy signals. It activates PKC-α and AKT and regulates the actin cytoskeleton. Deregulation of multiple elements of the mTOR pathway (PI3K amplification/mutation, PTEN loss of function, AKT overexpression, and S6K1, 4EBP1 and eIF4E overexpression) has been reported in many types of cancers, particularly in melanoma, where alterations in major components of the mTOR pathway were reported to have significant effects on tumour progression. Therefore, mTOR is an appealing therapeutic target and mTOR inhibitors, including the rapamycin analogues deforolimus, everolimus and temsirolimus, are submitted to clinical trials for treating multiple cancers, alone or in combination with inhibitors of other pathways. Importantly, temsirolimus and everolimus were recently approved by the FDA for the treatment of renal cell carcinoma, PNET and giant cell astrocytoma. Small molecules that inhibit mTOR kinase activity and dual PI3K-mTOR inhibitors are also being developed. In this review, we aim to survey relevant research, the molecular mechanisms of signalling, including upstream activation and downstream effectors, and the role of mTOR in cancer, mainly in melanoma

    Review of laser-plasma physics research and applications in Korea

    No full text
    Laser plasmas can be produced when high-power laser beams are focused in matter. A focused laser beam of TW(terawatt)-level high power has an extremely strong electric field, so neutral atoms are immediately ionized by the laser electric field, leading to a laser-produced plasma. The laser plasma can be produced by small table-top TW lasers based on the CPA (chirped-pulse amplification) technique, and now they are rather easily available even in university laboratories. In Korea, there are several CPA-based TW (or even petawatt) lasers in a few institutions, and they have been used for diverse laser plasma physics research and applications, including the laser acceleration for electrons and ions, high-power THz (tera-hertz) generation, advanced light sources, high-energy-density plasmas, plasma optics, etc. This paper reviews some of the laser plasma physics research and applications that have been performed in several universities and research institutes