16 research outputs found
Figs S1-S15.
The presence of large protein inclusions is a hallmark of neurodegeneration, and yet the precise molecular factors that contribute to their formation remain poorly understood. Screens using aggregation-prone proteins have commonly relied on downstream toxicity as a readout rather than the direct formation of aggregates. Here, we combined a genome-wide CRISPR knockout screen with Pulse Shape Analysis, a FACS-based method for inclusion detection, to identify direct modifiers of TDP-43 aggregation in human cells. Our screen revealed both canonical and novel proteostasis genes, and unearthed SRRD, a poorly characterized protein, as a top regulator of protein inclusion formation. APEX biotin labeling reveals that SRRD resides in proximity to proteins that are involved in the formation and breakage of disulfide bonds and to intermediate filaments, suggesting a role in regulation of the spatial dynamics of the intermediate filament network. Indeed, loss of SRRD results in aberrant intermediate filament fibrils and the impaired formation of aggresomes, including blunted vimentin cage structure, during proteotoxic stress. Interestingly, SRRD also localizes to aggresomes and unfolded proteins, and rescues proteotoxicity in yeast whereby its N-terminal low complexity domain is sufficient to induce this affect. Altogether this suggests an unanticipated and broad role for SRRD in cytoskeletal organization and cellular proteostasis.</div
RNAseq data.
The presence of large protein inclusions is a hallmark of neurodegeneration, and yet the precise molecular factors that contribute to their formation remain poorly understood. Screens using aggregation-prone proteins have commonly relied on downstream toxicity as a readout rather than the direct formation of aggregates. Here, we combined a genome-wide CRISPR knockout screen with Pulse Shape Analysis, a FACS-based method for inclusion detection, to identify direct modifiers of TDP-43 aggregation in human cells. Our screen revealed both canonical and novel proteostasis genes, and unearthed SRRD, a poorly characterized protein, as a top regulator of protein inclusion formation. APEX biotin labeling reveals that SRRD resides in proximity to proteins that are involved in the formation and breakage of disulfide bonds and to intermediate filaments, suggesting a role in regulation of the spatial dynamics of the intermediate filament network. Indeed, loss of SRRD results in aberrant intermediate filament fibrils and the impaired formation of aggresomes, including blunted vimentin cage structure, during proteotoxic stress. Interestingly, SRRD also localizes to aggresomes and unfolded proteins, and rescues proteotoxicity in yeast whereby its N-terminal low complexity domain is sufficient to induce this affect. Altogether this suggests an unanticipated and broad role for SRRD in cytoskeletal organization and cellular proteostasis.</div
APEX2 proximity labeling reveals SRRD in close proximity to intermediate filaments and regulators of IF oligomerization.
1) HEK293Ts stably expressing SRRD-HA stained for HA and either CANX or mitochondria. B) Schematic of APEX2 proximity labeling experiment where APEX2 is fused to SRRD or to an NES control. C) Volcano plot of APEX2 proximity labeling mass spectrometry output, where fold change (x-axis) is plotted by significance (y-axis). Colored dots correspond to STRING clusters in 2E. (*) correspond to indicate functional annotations of interest highlighted in STRING cluster in 2E. D) Filtered GSEA (cellular compartment) of SRRD-APEX2 dataset. E) Clustering of top protein-protein interactions (STRING database) of top 88 proteins ranked by fold change and p-value. Clusters generated with MCL clustering and excludes proteins with no known connections and clusters with insignificant p-values. Clusters colored based on STRING annotated GO terms and proteins with functional annotations of interested are highlighted as follows: Protein-disulfide isomerases circled in pink, proteins involved in calcium binding circled in orange.</p
TDP-43 screen hits (less aggregation).
The presence of large protein inclusions is a hallmark of neurodegeneration, and yet the precise molecular factors that contribute to their formation remain poorly understood. Screens using aggregation-prone proteins have commonly relied on downstream toxicity as a readout rather than the direct formation of aggregates. Here, we combined a genome-wide CRISPR knockout screen with Pulse Shape Analysis, a FACS-based method for inclusion detection, to identify direct modifiers of TDP-43 aggregation in human cells. Our screen revealed both canonical and novel proteostasis genes, and unearthed SRRD, a poorly characterized protein, as a top regulator of protein inclusion formation. APEX biotin labeling reveals that SRRD resides in proximity to proteins that are involved in the formation and breakage of disulfide bonds and to intermediate filaments, suggesting a role in regulation of the spatial dynamics of the intermediate filament network. Indeed, loss of SRRD results in aberrant intermediate filament fibrils and the impaired formation of aggresomes, including blunted vimentin cage structure, during proteotoxic stress. Interestingly, SRRD also localizes to aggresomes and unfolded proteins, and rescues proteotoxicity in yeast whereby its N-terminal low complexity domain is sufficient to induce this affect. Altogether this suggests an unanticipated and broad role for SRRD in cytoskeletal organization and cellular proteostasis.</div
Antibodies used.
The presence of large protein inclusions is a hallmark of neurodegeneration, and yet the precise molecular factors that contribute to their formation remain poorly understood. Screens using aggregation-prone proteins have commonly relied on downstream toxicity as a readout rather than the direct formation of aggregates. Here, we combined a genome-wide CRISPR knockout screen with Pulse Shape Analysis, a FACS-based method for inclusion detection, to identify direct modifiers of TDP-43 aggregation in human cells. Our screen revealed both canonical and novel proteostasis genes, and unearthed SRRD, a poorly characterized protein, as a top regulator of protein inclusion formation. APEX biotin labeling reveals that SRRD resides in proximity to proteins that are involved in the formation and breakage of disulfide bonds and to intermediate filaments, suggesting a role in regulation of the spatial dynamics of the intermediate filament network. Indeed, loss of SRRD results in aberrant intermediate filament fibrils and the impaired formation of aggresomes, including blunted vimentin cage structure, during proteotoxic stress. Interestingly, SRRD also localizes to aggresomes and unfolded proteins, and rescues proteotoxicity in yeast whereby its N-terminal low complexity domain is sufficient to induce this affect. Altogether this suggests an unanticipated and broad role for SRRD in cytoskeletal organization and cellular proteostasis.</div
Plasmids submitted to AddGene.
The presence of large protein inclusions is a hallmark of neurodegeneration, and yet the precise molecular factors that contribute to their formation remain poorly understood. Screens using aggregation-prone proteins have commonly relied on downstream toxicity as a readout rather than the direct formation of aggregates. Here, we combined a genome-wide CRISPR knockout screen with Pulse Shape Analysis, a FACS-based method for inclusion detection, to identify direct modifiers of TDP-43 aggregation in human cells. Our screen revealed both canonical and novel proteostasis genes, and unearthed SRRD, a poorly characterized protein, as a top regulator of protein inclusion formation. APEX biotin labeling reveals that SRRD resides in proximity to proteins that are involved in the formation and breakage of disulfide bonds and to intermediate filaments, suggesting a role in regulation of the spatial dynamics of the intermediate filament network. Indeed, loss of SRRD results in aberrant intermediate filament fibrils and the impaired formation of aggresomes, including blunted vimentin cage structure, during proteotoxic stress. Interestingly, SRRD also localizes to aggresomes and unfolded proteins, and rescues proteotoxicity in yeast whereby its N-terminal low complexity domain is sufficient to induce this affect. Altogether this suggests an unanticipated and broad role for SRRD in cytoskeletal organization and cellular proteostasis.</div
Spacer sequences for sgRNAs used in validation studies.
Spacer sequences for sgRNAs used in validation studies.</p
TDP-43 screen hits (more aggregation).
The presence of large protein inclusions is a hallmark of neurodegeneration, and yet the precise molecular factors that contribute to their formation remain poorly understood. Screens using aggregation-prone proteins have commonly relied on downstream toxicity as a readout rather than the direct formation of aggregates. Here, we combined a genome-wide CRISPR knockout screen with Pulse Shape Analysis, a FACS-based method for inclusion detection, to identify direct modifiers of TDP-43 aggregation in human cells. Our screen revealed both canonical and novel proteostasis genes, and unearthed SRRD, a poorly characterized protein, as a top regulator of protein inclusion formation. APEX biotin labeling reveals that SRRD resides in proximity to proteins that are involved in the formation and breakage of disulfide bonds and to intermediate filaments, suggesting a role in regulation of the spatial dynamics of the intermediate filament network. Indeed, loss of SRRD results in aberrant intermediate filament fibrils and the impaired formation of aggresomes, including blunted vimentin cage structure, during proteotoxic stress. Interestingly, SRRD also localizes to aggresomes and unfolded proteins, and rescues proteotoxicity in yeast whereby its N-terminal low complexity domain is sufficient to induce this affect. Altogether this suggests an unanticipated and broad role for SRRD in cytoskeletal organization and cellular proteostasis.</div
APEX no stress data.
The presence of large protein inclusions is a hallmark of neurodegeneration, and yet the precise molecular factors that contribute to their formation remain poorly understood. Screens using aggregation-prone proteins have commonly relied on downstream toxicity as a readout rather than the direct formation of aggregates. Here, we combined a genome-wide CRISPR knockout screen with Pulse Shape Analysis, a FACS-based method for inclusion detection, to identify direct modifiers of TDP-43 aggregation in human cells. Our screen revealed both canonical and novel proteostasis genes, and unearthed SRRD, a poorly characterized protein, as a top regulator of protein inclusion formation. APEX biotin labeling reveals that SRRD resides in proximity to proteins that are involved in the formation and breakage of disulfide bonds and to intermediate filaments, suggesting a role in regulation of the spatial dynamics of the intermediate filament network. Indeed, loss of SRRD results in aberrant intermediate filament fibrils and the impaired formation of aggresomes, including blunted vimentin cage structure, during proteotoxic stress. Interestingly, SRRD also localizes to aggresomes and unfolded proteins, and rescues proteotoxicity in yeast whereby its N-terminal low complexity domain is sufficient to induce this affect. Altogether this suggests an unanticipated and broad role for SRRD in cytoskeletal organization and cellular proteostasis.</div
Genome-wide CRISPR-Cas9 KO screen using Pulse-Shape Analysis uncovers expected and novel modifiers of cellular proteostasis.
A) Schematic of theory underlying PulSA. B) Schematic of TDP-43 ΔNLS expression vectors tagged C- or N- terminally with mClover3, PulSA plots generated after transfection of corresponding vectors in 293Ts, and inset of cells showing TDP-43 localization. C) Schematic of genome-wide CRISPR-Cas9 KO screening method. D) Volcano plot of CRISPR screen results where each dot is the average of 4 sgRNAs targeting each gene, displaying the phenotype (x-axis) vs the significance (y-axis). Colored dots correspond to STRING cluster in 1F. E) Arrayed screen validation of top modifiers of TDP-43 ΔNLS aggregation. Each sgRNA KO is normalized to AAV5 non-targeting control and plotted to show the normalized change in the % of cells harboring TDP-43 ΔNLS aggregates. n = 3 replicates, one way anova with Tukey HSD test comparing AAV control to all 6 sgRNAs targeting each gene. Adjusted p -values: AAV-UBE3C 0.00038; AAV-HSPA4 0.03312; AAV-BTNL9 0.03011; AAV-SRRD 0.00003. F) Select clusters of top protein-protein interactions (STRING database) of top 119 genes ranked by p-value that when knocked out increase the number of cells harboring TDP-43 ΔNLS aggregates. Clusters generated with MCL clustering and excludes genes with no known connections and clusters with insignificant p-values. Clusters colored based on STRING annotated GO terms. Dashed line indicates noteworthy link of UBE3C to proteasomal degradation pathway G) Histograms of total TDP-43 ΔNLS expression for AAV5 non-targeting control and two HSPA4 targeting sgRNAs. F) Fraction of cells with TDP-43 aggregates (y-axis) in each TDP-43 ΔNLS expression bin (x-axis) for AAV5 non-targeting control and two HSPA4 targeting sgRNAs. Adjusted p-values i)bin 2500 AAV:HSPA4_C11 = 0.04711; AAV:HSPA4_C12 = 0.04054 ii) bin 3500 AAV:HSPA4_C11 = 0.03956; AAV:HSPA4_C12 = 0.04740 iii) AAV:HSPA4_C11 = 0.00341; AAV:HSPA4_C12 = 0.01095.</p
