1,184 research outputs found

    The Rational Synthesis of Bimetallic Catalysts on Oxide Supports

    Get PDF
    Catalysts play an important role in many chemical reactions. However, simple impregnated monometallic catalysts are often limited in their function. One way to overcome this limitation is through the incorporation of a secondary metal to the catalysts. These bimetallic catalysts often have synergistic benefits not observed in the monometallic analogues. Here, we focused on the synthesis of bimetallic catalysts using rational methods in order to improve catalyst function; specifically by tuning the particle size, morphology, and composition. The two methods of interests were Strong Electrostatic Adsorption (SEA) and Electroless Deposition (ED). An adaptation of SEA to bimetallic catalysts (coSEA) was use to synthesize ultrasmall highly dispersed alloyed nanoparticles on high surface area oxide supports (alumina and silica). Bimetallic catalysts of Pt, Pd, Co, Cu, and Ni having ~1nm nanoparticles were synthesized over silica, and Pt-Pd bimetallics were synthesized over aluminosilicates. These co-SEA catalysts have improved bimetallic interactions due to the close proximity and well-mixing of atoms. The Pt-Pd catalysts were evaluated as diesel oxidation catalysts using a simulated diesel exhaust at ORNL. The coSEA catalysts were more active and stable compared to conventional co-impregnated catalysts. Moreover, these highly alloyed co-SEA catalysts remained more alloyed after high temperature treatments (\u3e700°C) when compared to typical co-impregnation catalysts. Core-shell catalyst stabilization using surface free energy (SFE) principles was investigated through annealing treatments followed by catalyst characterization. The principle of anchoring low SFE metals on high SFE cores was demonstrated through the coupling of SEA for the nanoparticle cores and ED for the nanoparticle shells. The Ag-Ir core-shell materials resisted sintering with particle size growing only twofold for the bimetallic catalysts compared to over a tenfold size increase in the monometallic catalysts. This work demonstrated the effectiveness of using rational synthesis methods for bimetallic catalysts over simple co-impregnations. Having precise control on particle morphology, whether core-shell or alloyed, and size are important in catalyst design where high metal utilization and intimate bimetallic interaction are desired to reduce the amount of expensive precious group metals. By utilizing ED and SEA, we demonstrated new possibilities in improved bimetallic catalyst design that were unachievable with current conventional methods

    Measurement of proton, deuteron, triton, and α particle emission after nuclear muon capture on Al, Si, and Ti with the AlCap experiment

    Get PDF
    Heavy charged particles after nuclear muon capture are an important nuclear physics background to the muon-to-electron conversion experiments Mu2e and COMET, which will search for charged lepton flavor violation at an unprecedented level of sensitivity. The AlCap experiment measured the yield and energy spectra of protons, deuterons, tritons, and alpha particles emitted after the nuclear capture of muons stopped in Al, Si, and Ti in the low energy range relevant for the muon-to-electron conversion experiments. Individual charged particle types were identified in layered silicon detector packages and their initial energy distributions were unfolded from the observed energy spectra. Detailed information on yields and energy spectra for all observed nuclei are presented in the paper.Comment: 24 pages, 19 figure

    Improving Metabolic Health Through Precision Dietetics in Mice

    Get PDF
    The incidence of diet-induced metabolic disease has soared over the last half-century, despite national efforts to improve health through universal dietary recommendations. Studies comparing dietary patterns of populations with health outcomes have historically provided the basis for healthy diet recommendations. However, evidence that population-level diet responses are reliable indicators of responses across individuals is lacking. This study investigated how genetic differences influence health responses to several popular diets in mice, which are similar to humans in genetic composition and the propensity to develop metabolic disease, but enable precise genetic and environmental control. We designed four human-comparable mouse diets that are representative of those eaten by historical human populations. Across four genetically distinct inbred mouse strains, we compared the American diet’s impact on metabolic health to three alternative diets (Mediterranean, Japanese, and Maasai/ketogenic). Furthermore, we investigated metabolomic and epigenetic alterations associated with diet response. Health effects of the diets were highly dependent on genetic background, demonstrating that individualized diet strategies improve health outcomes in mice. If similar genetic-dependent diet responses exist in humans, then a personalized, or “precision dietetics,” approach to dietary recommendations may yield better health outcomes than the traditional one-size-fits-all approach

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Behind the Red Curtain: Environmental Concerns and the End of Communism

    Full text link
    corecore