512 research outputs found

    Structural and functional characterization of NanU, a novel high-affinity sialic acid-inducible binding protein of oral and gut-dwelling Bacteroidetes species

    Get PDF
    Many human-dwelling bacteria acquire sialic acid for growth or surface display. We identified previously a sialic acid utilization operon in Tannerella forsythia that includes a novel outer membrane sialic acid-transport system (NanOU), where NanO (neuraminate outer membrane permease) is a putative TonB-dependent receptor and NanU (extracellular neuraminate uptake protein) is a predicted SusD family protein. Using heterologous complementation of nanOU genes into an Escherichia coli strain devoid of outer membrane sialic acid permeases, we show that the nanOU system from the gut bacterium Bacteroides fragilis is functional and demonstrate its dependence on TonB for function. We also show that nanU is required for maximal function of the transport system and that it is expressed in a sialic acid-responsive manner. We also show its cellular localization to the outer membrane using fractionation and immunofluorescence experiments. Ligand-binding studies revealed high-affinity binding of sialic acid to NanU (Kd ~400 nM) from two Bacteroidetes species as well as binding of a range of sialic acid analogues. Determination of the crystal structure of NanU revealed a monomeric SusD-like structure containing a novel motif characterized by an extended kinked helix that might determine sugar-binding specificity. The results of the present study characterize the first bacterial extracellular sialic acid-binding protein and define a sialic acid-specific PUL (polysaccharide utilization locus)

    Molecular Adaptation of Photoprotection: Triplet States in Light-Harvesting Proteins

    Get PDF
    The photosynthetic light-harvesting systems of purple bacteria and plants both utilize specific carotenoids as quenchers of the harmful (bacterio)chlorophyll triplet states via triplet-triplet energy transfer. Here, we explore how the binding of carotenoids to the different types of light-harvesting proteins found in plants and purple bacteria provides adaptation in this vital photoprotective function. We show that the creation of the carotenoid triplet states in the light-harvesting complexes may occur without detectable conformational changes, in contrast to that found for carotenoids in solution. However, in plant light-harvesting complexes, the triplet wavefunction is shared between the carotenoids and their adjacent chlorophylls. This is not observed for the antenna proteins of purple bacteria, where the triplet is virtually fully located on the carotenoid molecule. These results explain the faster triplet-triplet transfer times in plant light-harvesting complexes. We show that this molecular mechanism, which spreads the location of the triplet wavefunction through the pigments of plant light-harvesting complexes, results in the absence of any detectable chlorophyll triplet in these complexes upon excitation, and we propose that it emerged as a photoprotective adaptation during the evolution of oxygenic photosynthesis

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV