5,553 research outputs found
A secure cooperative image super-resolution transmission with decode-and-forward relaying over Rayleigh fading channels
In addition to susceptibility to performance degradation due to hardware malfunctions and environmental influences, wireless image transmission poses risks of information exposure to eavesdroppers. This paper delves into the image communications within wireless relay networks (WRNs) and proposes a secure cooperative relaying (SCR) protocol over Rayleigh fading channels. In this protocol, a source node (referred to as Alice) transmits superior-resolution (SR) images to a destination node (referred to as Bob) with the assistance of a mediating node (referred to as Relay) operating in decode-and-forward mode, all while contending with the presence of an eavesdropper (referred to as Eve). In order to conserve transmission bandwidth, Alice firstly reduces the size of the original SR images before transmitting them to Relay and Bob. Subsequently, random linear network coding (RLNC) is employed by both Alice and Relay on the down- scaled poor-resolution (PR) images to obscure the original images from Eve, thereby bolstering the security of the image communications. Simulation results demonstrate that the proposed SCR protocol surpasses both secure relaying transmission without a direct link and secure direct transmission without relaying links. Additionally, a slight reduction in image quality can be achieved by increasing the scaling factor for saving transmission bandwidth. Furthermore, the results highlight the SCR protocol’s superior effectiveness at Bob’s end when compared to Eve’s, which is due to Eve’s lack of access to the RLNC coefficient matrices and reference images utilised by Alice and Relay in the RLNC process. Finally, the evaluation of reference images, relay allocations and diversity reception over Rayleigh fading channels confirms the effectiveness of the SCR protocol for secure image communications in the WRNs
Generalized Newton's Method based on Graphical Derivatives
This paper concerns developing a numerical method of the Newton type to solve
systems of nonlinear equations described by nonsmooth continuous functions. We
propose and justify a new generalized Newton algorithm based on graphical
derivatives, which have never been used to derive a Newton-type method for
solving nonsmooth equations. Based on advanced techniques of variational
analysis and generalized differentiation, we establish the well-posedness of
the algorithm, its local superlinear convergence, and its global convergence of
the Kantorovich type. Our convergence results hold with no semismoothness
assumption, which is illustrated by examples. The algorithm and main results
obtained in the paper are compared with well-recognized semismooth and
-differentiable versions of Newton's method for nonsmooth Lipschitzian
equations
A secure network coding based modify-and-forward scheme for cooperative wireless relay networks
This paper investigates the security at the physical layer of cooperative relay communications. Inspired by the principle of physical-layer network coding (PNC), we propose a new secure relaying scheme, namely secure PNC-based modify-and-forward (SPMF). In the proposed scheme, the relay node linearly combines the decoded data from the source node with an encrypted key before conveying the mixed data to the destination node. As both the linear PNC operation and encrypted key at the relay are unknown to the eavesdropper, the SPMF scheme provides a double security level in the system. Particularly, taking into account the practical scenario of the imperfect knowledge shared between the relay and destination, the secrecy outage probability (SOP) of the proposed SPMF scheme is analysed and evaluated in comparison with modify-and-forward, cooperative jamming, decode-and-forward and direct transmission schemes. The proposed scheme is shown to achieve a performance improvement of up to 3 dB when compared to the conventional schemes under imperfect knowledge of shared information between the nodes
A power-splitting relaying protocol for wireless energy harvesting and information processing in NOMA systems
Non-orthogonal multiple access (NOMA) along with cooperative communications have been recognized as promising candidates for the fifth generation (5G) wireless networks and have attracted many researchers. Every networked device however has its own limited power supply. To this extent, this paper investigates a power-splitting relaying (PSR) protocol for wireless energy harvesting and information processing in the NOMA systems to prolong the lifetime of the energy-constrained relay nodes in wireless networks so as to avail the ambient radio-frequency (RF) signal as well as to simultaneously harvest the energy and process the information. Decode-and-forward relaying is employed at the relay node where the energy from the received RF signal is harvested and exploited to forward the information to the destination. Specifically, the outage probability and ergodic rate of the PSR protocol are derived to realize the impacts of energy harvesting time, energy harvesting efficiency, power splitting ratio, source data rate, and the distance between nodes. It is also shown that an increased energy harvesting efficiency results in an enhanced performance and an outperformance in terms of the energy efficiency is achieved with the employment of the NOMA when compared to the conventional orthogonal multiple access. Numerical results are provided to verify the findings
On the performance of NOMA in SWIPT systems with power-splitting relaying
This paper presents a decode-and-forward (DF) relaying protocol, namely power-splitting relaying (PSR), employed at relay nodes in NOMA technique. The PSR is considered for simultaneous wireless information and power transfer (SWIPT) systems. The relaying node is both energy harvesting from the received radio frequency (RF) signal and information forwarding to the destination. The outage performance and ergodic rate of the PSR are analyzed to realize the impacts of energy harvesting time, energy harvesting efficiency, power splitting ratio, source data rate, and the distance between the source and relay nodes. The simulation results show that NOMA schemes have the lower outage probability compared to the that of the conventional orthogonal multiple access (OMA) schemes at the destination node. Numerical results are provided to verify the findings
- …