33 research outputs found
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Overcoming leakage in scalable quantum error correction
Leakage of quantum information out of computational states into higher energy
states represents a major challenge in the pursuit of quantum error correction
(QEC). In a QEC circuit, leakage builds over time and spreads through
multi-qubit interactions. This leads to correlated errors that degrade the
exponential suppression of logical error with scale, challenging the
feasibility of QEC as a path towards fault-tolerant quantum computation. Here,
we demonstrate the execution of a distance-3 surface code and distance-21
bit-flip code on a Sycamore quantum processor where leakage is removed from all
qubits in each cycle. This shortens the lifetime of leakage and curtails its
ability to spread and induce correlated errors. We report a ten-fold reduction
in steady-state leakage population on the data qubits encoding the logical
state and an average leakage population of less than
throughout the entire device. The leakage removal process itself efficiently
returns leakage population back to the computational basis, and adding it to a
code circuit prevents leakage from inducing correlated error across cycles,
restoring a fundamental assumption of QEC. With this demonstration that leakage
can be contained, we resolve a key challenge for practical QEC at scale.Comment: Main text: 7 pages, 5 figure
Measurement-induced entanglement and teleportation on a noisy quantum processor
Measurement has a special role in quantum theory: by collapsing the
wavefunction it can enable phenomena such as teleportation and thereby alter
the "arrow of time" that constrains unitary evolution. When integrated in
many-body dynamics, measurements can lead to emergent patterns of quantum
information in space-time that go beyond established paradigms for
characterizing phases, either in or out of equilibrium. On present-day NISQ
processors, the experimental realization of this physics is challenging due to
noise, hardware limitations, and the stochastic nature of quantum measurement.
Here we address each of these experimental challenges and investigate
measurement-induced quantum information phases on up to 70 superconducting
qubits. By leveraging the interchangeability of space and time, we use a
duality mapping, to avoid mid-circuit measurement and access different
manifestations of the underlying phases -- from entanglement scaling to
measurement-induced teleportation -- in a unified way. We obtain finite-size
signatures of a phase transition with a decoding protocol that correlates the
experimental measurement record with classical simulation data. The phases
display sharply different sensitivity to noise, which we exploit to turn an
inherent hardware limitation into a useful diagnostic. Our work demonstrates an
approach to realize measurement-induced physics at scales that are at the
limits of current NISQ processors
Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
Understanding universal aspects of quantum dynamics is an unresolved problem
in statistical mechanics. In particular, the spin dynamics of the 1D Heisenberg
model were conjectured to belong to the Kardar-Parisi-Zhang (KPZ) universality
class based on the scaling of the infinite-temperature spin-spin correlation
function. In a chain of 46 superconducting qubits, we study the probability
distribution, , of the magnetization transferred across the
chain's center. The first two moments of show superdiffusive
behavior, a hallmark of KPZ universality. However, the third and fourth moments
rule out the KPZ conjecture and allow for evaluating other theories. Our
results highlight the importance of studying higher moments in determining
dynamic universality classes and provide key insights into universal behavior
in quantum systems