102 research outputs found

    A Universal Part-of-Speech Tagset

    Full text link
    To facilitate future research in unsupervised induction of syntactic structure and to standardize best-practices, we propose a tagset that consists of twelve universal part-of-speech categories. In addition to the tagset, we develop a mapping from 25 different treebank tagsets to this universal set. As a result, when combined with the original treebank data, this universal tagset and mapping produce a dataset consisting of common parts-of-speech for 22 different languages. We highlight the use of this resource via two experiments, including one that reports competitive accuracies for unsupervised grammar induction without gold standard part-of-speech tags

    Structured Training for Neural Network Transition-Based Parsing

    Full text link
    We present structured perceptron training for neural network transition-based dependency parsing. We learn the neural network representation using a gold corpus augmented by a large number of automatically parsed sentences. Given this fixed network representation, we learn a final layer using the structured perceptron with beam-search decoding. On the Penn Treebank, our parser reaches 94.26% unlabeled and 92.41% labeled attachment accuracy, which to our knowledge is the best accuracy on Stanford Dependencies to date. We also provide in-depth ablative analysis to determine which aspects of our model provide the largest gains in accuracy

    Token and Type Constraints for Cross-Lingual Part-of-Speech Tagging

    Get PDF
    We consider the construction of part-of-speech taggers for resource-poor languages. Recently, manually constructed tag dictionaries from Wiktionary and dictionaries projected via bitext have been used as type constraints to overcome the scarcity of annotated data in this setting. In this paper, we show that additional token constraints can be projected from a resource-rich source language to a resource-poor target language via word-aligned bitext. We present several models to this end; in particular a partially observed conditional random field model, where coupled token and type constraints provide a partial signal for training. Averaged across eight previously studied Indo-European languages, our model achieves a 25% relative error reduction over the prior state of the art. We further present successful results on seven additional languages from different families, empirically demonstrating the applicability of coupled token and type constraints across a diverse set of languages

    Temporal Analysis of Language through Neural Language Models

    Full text link
    We provide a method for automatically detecting change in language across time through a chronologically trained neural language model. We train the model on the Google Books Ngram corpus to obtain word vector representations specific to each year, and identify words that have changed significantly from 1900 to 2009. The model identifies words such as "cell" and "gay" as having changed during that time period. The model simultaneously identifies the specific years during which such words underwent change

    Natural Language Processing with Small Feed-Forward Networks

    Full text link
    We show that small and shallow feed-forward neural networks can achieve near state-of-the-art results on a range of unstructured and structured language processing tasks while being considerably cheaper in memory and computational requirements than deep recurrent models. Motivated by resource-constrained environments like mobile phones, we showcase simple techniques for obtaining such small neural network models, and investigate different tradeoffs when deciding how to allocate a small memory budget.Comment: EMNLP 2017 short pape

    Universal Semantic Parsing

    Get PDF
    Universal Dependencies (UD) offer a uniform cross-lingual syntactic representation, with the aim of advancing multilingual applications. Recent work shows that semantic parsing can be accomplished by transforming syntactic dependencies to logical forms. However, this work is limited to English, and cannot process dependency graphs, which allow handling complex phenomena such as control. In this work, we introduce UDepLambda, a semantic interface for UD, which maps natural language to logical forms in an almost language-independent fashion and can process dependency graphs. We perform experiments on question answering against Freebase and provide German and Spanish translations of the WebQuestions and GraphQuestions datasets to facilitate multilingual evaluation. Results show that UDepLambda outperforms strong baselines across languages and datasets. For English, it achieves a 4.9 F1 point improvement over the state-of-the-art on GraphQuestions. Our code and data can be downloaded at https://github.com/sivareddyg/udeplambda.Comment: EMNLP 201
    corecore