837 research outputs found
Magnetic shuffling of coronal downdrafts
Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and
have been recently addressed from an observation after a solar eruption. We
study the possible back-effect of the magnetic field on the propagation of
confined flows. We compare two 3D MHD simulations of dense supersonic plasma
blobs downfalling along a coronal magnetic flux tube. In one, the blobs move
strictly along the field lines; in the other, the initial velocity of the blobs
is not perfectly aligned to the magnetic field and the field is weaker. The
aligned blobs remain compact while flowing along the tube, with the generated
shocks. The misaligned blobs are disrupted and merged by the chaotic shuffling
of the field lines, and structured into thinner filaments; Alfven wave fronts
are generated together with shocks ahead of the dense moving front. Downflowing
plasma fragments can be chaotically and efficiently mixed if their motion is
misaligned to field lines, with broad implications, e.g., disk accretion in
protostars, coronal eruptions and rain.Comment: 9 pages, 4 figures, proposed for acceptance, movies available upon
request to the first autho
Guided flows in coronal magnetic flux tubes
There is evidence for coronal plasma flows to break down into fragments and
to be laminar. We investigate this effect by modeling flows confined along
magnetic channels. We consider a full MHD model of a solar atmosphere box with
a dipole magnetic field. We compare the propagation of a cylindrical flow
perfectly aligned to the field to that of another one with a slight
misalignment. We assume a flow speed of 200 km/s, and an ambient magnetic field
of 30 G. We find that while the aligned flow maintains its cylindrical symmetry
while it travels along the magnetic tube, the misaligned one is rapidly
squashed on one side, becoming laminar and eventually fragmented because of the
interaction and backreaction of the magnetic field. This model could explain an
observation of erupted fragments that fall back as thin and elongated strands
and end up onto the solar surface in a hedge-like configuration, made by the
Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The
initial alignment of plasma flow plays an important role in determining the
possible laminar structure and fragmentation of flows while they travel along
magnetic channels.Comment: 11 pages, 8 figures, accepted for publication, movies available upon
request to the first autho
Bright hot impacts by erupted fragments falling back on the Sun: magnetic channelling
Dense plasma fragments were observed to fall back on the solar surface by the
Solar Dynamics Observatory after an eruption on 7 June 2011, producing strong
EUV brightenings. Previous studies investigated impacts in regions of weak
magnetic field. Here we model the km/s impact of fragments
channelled by the magnetic field close to active regions. In the observations,
the magnetic channel brightens before the fragment impact. We use a 3D-MHD
model of spherical blobs downfalling in a magnetized atmosphere. The blob
parameters are constrained from the observation. We run numerical simulations
with different ambient density and magnetic field intensity. We compare the
model emission in the 171\AA~ channel of the Atmospheric Imaging Assembly with
the observed one. We find that a model of downfall channelled in a MK
coronal loop confined by a magnetic field of G, best explains
qualitatively and quantitatively the observed evolution. The blobs are highly
deformed, further fragmented, when the ram pressure becomes comparable to the
local magnetic pressure and they are deviated to be channelled by the field,
because of the differential stress applied by the perturbed magnetic field.
Ahead of them, in the relatively dense coronal medium, shock fronts propagate,
heat and brighten the channel between the cold falling plasma and the solar
surface. This study shows a new mechanism which brightens downflows channelled
by the magnetic field, such as in accreting young stars, and also works as a
probe of the ambient atmosphere, providing information about the local plasma
density and magnetic field.Comment: 17 pages, 14 figure
Thermal structure of hot non-flaring corona from Hinode/EIS
In previous studies a very hot plasma component has been diagnosed in solar
active regions through the images in three different narrow-band channels of
SDO/AIA. This diagnostic from EUV imaging data has also been supported by the
matching morphology of the emission in the hot Ca XVII line, as observed with
Hinode/EIS. This evidence is debated because of unknown distribution of the
emission measure along the line of sight. Here we investigate in detail the
thermal distribution of one of such regions using EUV spectroscopic data. In an
active region observed with SDO/AIA, Hinode/EIS and XRT, we select a subregion
with a very hot plasma component and another cooler one for comparison. The
average spectrum is extracted for both, and 14 intense lines are selected for
analysis, that probe the 5.5 < log T < 7 temperature range uniformly. From
these lines the emission measure distributions are reconstructed with the MCMC
method. Results are cross-checked with comparison of the two subregions, with a
different inversion method, with the morphology of the images, and with the
addition of fluxes measured with from narrow and broad-band imagers. We find
that, whereas the cool region has a flat and featureless distribution that
drops at temperature log T >= 6.3, the distribution of the hot region shows a
well-defined peak at log T = 6.6 and gradually decreasing trends on both sides,
thus supporting the very hot nature of the hot component diagnosed with
imagers. The other cross-checks are consistent with this result. This study
provides a completion of the analysis of active region components, and the
resulting scenario supports the presence of a minor very hot plasma component
in the core, with temperatures log T > 6.6.Comment: 12 pages, 8 figures, accepted for publicatio
Two-Color Radiation Generated in a Seeded Free-Electron Laser with Two Electron Beams
We present the experimental evidence of the generation of coherent and statistically stable two-color free-electron laser radiation obtained by seeding an electron beam double peaked in energy with a laser pulse single spiked in frequency. The radiation presents two neat spectral lines, with time delay, frequency separation, and relative intensity that can be accurately controlled. The analysis of the emitted radiation shows a temporal coherence and a shot-to-shot regularity in frequency significantly enhanced with respect to the self-amplified spontaneous emission. © 2015 American Physical Society
Principal Component Analysis to correct data systematics. Case study: K2 light curves
Instrumental data are affected by systematic effects that dominate the errors
and can be relevant when searching for small signals. This is the case of the
K2 mission, a follow up of the Kepler mission, that, after a failure on two
reaction wheels, has lost its stability properties rising strongly the
systematics in the light curves and reducing its photometric precision. In this
work, we have developed a general method to remove time related systematics
from a set of light curves, that has been applied to K2 data. The method uses
the Principal Component Analysis to retrieve the correlation between the light
curves due to the systematics and to remove its effect without knowing any
information other than the data itself. We have applied the method to all the
K2 campaigns available at the Mikulski Archive for Space Telescopes, and we
have tested the effectiveness of the procedure and its capability in preserving
the astrophysical signal on a few transits and on eclipsing binaries. One
product of this work is the identification of stable sources along the ecliptic
plane that can be used as photometric calibrators for the upcoming Atmospheric
Remote-sensing Exoplanet Large-survey mission.Comment: 20 pages, 7 figures. Accepted for publicatio
X-Raying the Dark Side of Venus - Scatter from Venus Magnetotail?
This work analyzes the X-ray, EUV and UV emission apparently coming from the
Earth-facing (dark) side of Venus as observed with Hinode/XRT and SDO/AIA
during a transit across the solar disk occurred in 2012. We have measured
significant X-Ray, EUV and UV flux from Venus dark side. As a check we have
also analyzed a Mercury transit across the solar disk, observed with Hinode/XRT
in 2006. We have used the latest version of the Hinode/XRT Point Spread
Function (PSF) to deconvolve Venus and Mercury X-ray images, in order to remove
possible instrumental scattering. Even after deconvolution, the flux from Venus
shadow remains significant while in the case of Mercury it becomes negligible.
Since stray-light contamination affects the XRT Ti-poly filter data from the
Venus transit in 2012, we performed the same analysis with XRT Al-mesh filter
data, which is not affected by the light leak. Even the Al-mesh filter data
show residual flux. We have also found significant EUV (304 A, 193 A, 335 A)
and UV (1700 A) flux in Venus shadow, as measured with SDO/AIA. The EUV
emission from Venus dark side is reduced when appropriate deconvolution methods
are applied; the emission remains significant, however. The light curves of the
average flux of the shadow in the X-ray, EUV, and UV bands appear different as
Venus crosses the solar disk, but in any of them the flux is, at any time,
approximately proportional to the average flux in a ring surrounding Venus, and
therefore proportional to the average flux of the solar regions around Venus
obscuring disk line of sight. The proportionality factor depends on the band.
This phenomenon has no clear origin; we suggest it may be due to scatter
occurring in the very long magnetotail of Venus.Comment: This paper has been accepted in The Astrophysical Journa
- …