1,109 research outputs found
End of Life Disposal for Three Libration Point Missions through Manipulation of the Jacobi Constant and Zero Velocity Curves
The aim of this investigation is to determine the feasibility of mission disposal by inserting the spacecraft into a heliocentric orbit along the unstable manifold and then manipulating the Jacobi constant to prevent the spacecraft from returning to the Earth-Moon system. This investigation focuses around L1 orbits representative of ACE, WIND, and SOHO. It will model the impulsive delta-V necessary to close the zero velocity curves after escape through the L1 gateway in the circular restricted three body model and also include full ephemeris force models and higher fidelity finite maneuver models for the three spacecraft
Effect of Obesity and Exercise on the Expression of the Novel Myokines, Myonectin and Fibronectin Type III Domain Containing 5
Metabolic dysfunction in skeletal muscle is a major contributor to the development of type 2 diabetes. Endurance exercise training has long been established as an effective means to directly restore skeletal muscle glucose and lipid uptake and metabolism. However, in addition to the direct effects of skeletal muscle on glucose and lipids, there is renewed interest in the ability of skeletal muscle to coordinate metabolic activity of other tissues, such as adipose tissue and liver. The purpose of this study was to examine the effects of endurance exercise on the expression level of two novel muscle-derived secreted factors, or myokines, Myonectin and Fibronectin type III domain containing 5 (FNDC5), the precursor for Irisin.
Methods. We performed immunoblot analysis and quantitative real-time PCR analysis of Myonectin and FNDC5 in the diaphragm muscles of obese Zucker rat (OZR) and lean Zucker rat (LZR) with 9 weeks of aerobic training on a motorized treadmill.
Results. We show that myonectin gene expression is increased in the OZR model of obesity and decreases with exercise in both lean and obese Zucker rats. Conversely, myonectin protein concentration was elevated with exercise. Similarly, FNDC5 mRNA levels are significantly higher in the OZR, however exercise training had no effect on the expression level of FNDC5 in either the LZR or OZR. We did not observe any difference in muscle protein content of Irisin with obesity or exercise.
Conclusion. Our data shows that exercise training does not increase either FNDC5 or myonectin gene expression, indicating that increased transcriptional regulation of these myokines is not induced by exercise. However, our data also indicates a yet to be explored disconnect between myonectin gene expression and protein content. Further, this report highlights the importance of verifying reference genes when completing gene expression analysis. We found that many commonly used reference genes varied significantly by obesity and/or exercise and would have skewed the results of this study if used to normalize gene expression data. The unstable reference genes include: beta-Actin, beta-2-microglobulin, Non-POU domain containing, octamer-binding, Peptidylprolyl isomerase H, 18S ribosomal RNA, TATA box binding protein and Transferrin receptor
Groundwater Availability of the Northern High Plains Aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming
The Northern High Plains aquifer underlies about 93,000 square miles of Colorado, Kansas, Nebraska, South Dakota, and Wyoming and is the largest subregion of the nationally important High Plains aquifer. Irrigation, primarily using groundwater, has supported agricultural production since before 1940, resulting in nearly $50 billion in sales in 2012. In 2010, the High Plains aquifer had the largest groundwater withdrawals of any major aquifer system in the United States.Nearly one-half of those withdrawals were from the Northern High Plains aquifer, which has little hydrologic interaction with parts of the aquifer farther south. Land-surface elevation ranges from more than 7,400 feet (ft) near the western edge to less than 1,100 ft near the eastern edge. Major streams primarily flow west to east and include the Big Blue River, Elkhorn River, Loup River, Niobrara River, Republican Riverand Platte River with its two forks—the North Platte River and South Platte River. Population in the Northern High Plains aquifer area is sparse with only 2 cities having a population greater than 30,000.Droughts across much of the area from 2001 to 2007, combined with recent (2004–18) legislation, have heightened concerns regarding future groundwater availability and highlighted the need for science-based water-resource management. Groundwater models with the capability to provide forecasts of groundwater availability and related stream base flows from the Northern High Plains aquifer were published recently (2016) and were used to analyze groundwater avail-ability. Stream base flows are generally the dominant component of total streamflow in the Northern High Plains aquifer, and total streamflows or shortages thereof define conjunctive management triggers, at least in Nebraska. Groundwater availability was evaluated through comparison of aquifer-scale water budgets compared for periods before and after major groundwater development and across selected future fore-casts. Groundwater-level declines and the forecast amount of groundwater in storage in the aquifer also were examined
The Sex Specific Effect of Alcohol Consumption on Circulating Levels of CTRP3
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The goal of this project was to establish the effect of alcohol consumption on the circulating levels of the adipose tissue derived protein C1q TNF Related Protein 3 (CTRP3). Adipose tissue secretes several adipokines, such as adiponectin and leptin, which exert a multitude of biological effects important for human health. However, adipose tissue is extremely sensitive to alcohol consumption, leading not only to disrupted fat storage, but also to disruptions in adipokine production. Changes to adipokine secretion could have widespread biological effects and potentially contribute to alcohol-induced ailments, such as alcoholic fatty liver disease (ALD). CTRP3 has been previously demonstrated to attenuate fatty liver disease, and suppression of CTRP3 with alcohol consumption could contribute to development of and progression to alcoholic fatty liver disease. To examine the effect of ethanol consumption on circulating adipokine levels, male and female mice were fed an ethanol containing diet (Lieber- DeCarli 5% (v/v) ethanol diet) for 10-days followed by a single gavage of 5 g/kg ethanol (the NIAAA model), or for 6-weeks with no binge added (chronic model). In female mice, adiponectin levels increased ~2-fold in both models of ethanol feeding, but in male mice increased adiponectin levels were only observed after chronic ethanol feeding. On the other hand, in female mice, circulating CTRP3 levels decreased by ~75% and ~50% in the NIAAA and chronic model, respectively, with no changes observed in the male mice in either feeding model. Leptin levels were unchanged with ethanol feeding regardless of model or sex of mice. Lastly, chronic ethanol feeding led to a significant increase in mortality (~50%) in female mice, with no difference in relative ethanol consumption. These findings indicate that ethanol consumption can dysregulate adipokine secretion, but that the effects vary by sex of animal, method of ethanol consumption, and adipokine examined. These findings also indicate that female mice are more sensitive to the chronic effects of ethanol than male mice. Notably, this is the first study to document the effects of ethanol consumption on the circulating levels of CTRP3. Understanding the impact of excessive alcohol consumption on adipokine production and secretion could identify novel mechanisms of alcohol-induced human disease. However, the mechanism responsible for the increased sensitivity remains elusive
Dietary supplementation with pollen enhances survival and Collembola boosts fitness of a web-building spider
Uncertainties exist about the value of non-prey food for predators that are commonly food-limited, and the dietary conditions where non-prey foods are beneficial for carnivorous species. Prior studies show that large quantities of pollen grains are intercepted in the webs of web-building spiders. We examined the nutritional benefits of pollen as a non-prey food for a common ground-dwelling, sheet web-building spider, Mermessus fradeorum (Berland) (Araneae: Linyphiidae). These predators were provided diets of prey or no prey in the presence and absence of pollen. Treatment effects were quantified by measuring predator body nutrient composition, survival, body size, and offspring production. Per unit dry weight, pollen had less nitrogen and lipids than prey, although relative quantities of these nutrients per meal were not measured. Dietary treatments altered the body tissue composition of the spiders, leading to the highest N content and lipid reserves in spiders provided with Collembola. Supplementing diets with pollen increased both juvenile and adult survival, and the greatest survivorship and offspring production was observed when spiders were provided diets of Collembola supplemented with pollen. Our results show that Collembola are high-quality prey for spiders and pollen has positive effects on nutritional status and survival of a carnivorous species. Foraging on plant material potentially promotes population growth at early and late developmental stages by supplementing diets of poor-quality prey, and preventing starvation when prey are scarce
Divergent Relationship of Circulating CTRP3 Levels between Obesity and Gender: a Cross-sectional Study
C1q TNF Related Protein 3 (CTRP3) is a novel adipose tissue derived secreted factor, or adipokine, which has been linked to a number of beneficial biological effects on metabolism, inflammation, and survival signaling in a variety of tissues. However, very little is known about CTRP3 in regards to human health. The purpose of this project was to examine circulating CTRP3 levels in a clinical population, patients with symptoms requiring heart catheterization in order to identify the presence of obstructive coronary artery disease (CAD). It was hypothesized that serum CTRP3 levels would be decreased in the presence of CAD. Methods Body mass index (BMI), diabetes status, and plasma samples were collected from 100 patients who were \u3e30 years of age and presented at the East Tennessee State University Heart Clinic with symptoms requiring heart catheterization in order to identify the presence of cardiovascular blockages (n = 52 male, n = 48 female). Circulating CTRP3 levels were quantified using commercially available ELISA. Results Circulating CTRP3 levels had no relationship to the presence of CAD regardless of gender. However, circulating concentrations of CTRP3 were significantly higher in normal weight (BMI \u3c 30) females (0.88 ± 0.12 µg/ml) compared with males (0.54 ± 0.06 µg/ml). Further, obesity (BMI \u3e 30) resulted in an increase in circulating CTRP3 levels in male subjects (0.74 ± 0.08 µg/ml) but showed a significant decrease in female subjects (0.58 ± 0.07 µg/ml). Additionally, there was a significant reduction in circulating CTRP3 levels in female subjects who were diagnosed with Type 2 diabetes compared with patients without (0.79 ± 0.08 vs. 0.42 ± 0.10 µg/ml). There was no relationship between diabetes status and circulating CTRP3 levels in male subjects. Conclusion Circulating CTRP3 levels had a different relationship with diabetes and obesity status between male and female patients. It is possible that circulating CTRP3 levels are controlled by hormonal status, however more research is needed to explore this relationship. Nevertheless, future studies examining the relationship between CTRP3 levels and disease status should treat gender as an independent variable
Immunomodulatory Roles of CTRP3 in Endotoxemia and Metabolic Stress
C1q/TNF-related protein 3 (CTRP3) is a secreted hormone that modulates hepatic glucose and lipid metabolism. Its circulating levels are reduced in human and rodent models of obesity, a metabolic state accompanied by chronic low-grade inflammation. Recent studies have demonstrated an anti-inflammatory role for recombinant CTRP3 in attenuating LPS-induced systemic inflammation, and its deficiency markedly exacerbates inflammation in a mouse model of rheumatoid arthritis. We used genetic mouse models to explore the immunomodulatory function of CTRP3 in response to acute (LPS challenge) and chronic (high-fat diet) inflammatory stimuli. In a sublethal dose of LPS challenge, neither CTRP3 deficiency nor its overexpression in transgenic mice had an impact on IL-1β, IL-6, TNF-α, or MIP-2 induction at the serum protein or mRNA levels, contrary to previous findings based on recombinant CTRP3 administration. In a metabolic context, we measured 71 serum cytokine levels in wild-type and CTRP3 transgenic mice fed a high-fat diet or a matched control low-fat diet. On a low-fat diet, CTRP3 transgenic mice had elevated circulating levels of multiple chemokines (CCL11, CXCL9, CXCL10, CCL17, CX3CL1, CCL22 and sCD30). However, when obesity was induced with a high-fat diet, CTRP3 transgenic mice had lower circulating levels of IL-5, TNF-α, sVEGF2, and sVEGFR3, and a higher level of soluble gp130. Contingent upon the metabolic state, CTRP3 overexpression altered chemokine levels in lean mice, and attenuated systemic inflammation in the setting of obesity and insulin resistance. These results highlight a context-dependent immunomodulatory role for CTRP3
Exploring a string-like landscape
We explore inflationary trajectories within randomly-generated
two-dimensional potentials, considered as a toy model of the string landscape.
Both the background and perturbation equations are solved numerically, the
latter using the two-field formalism of Peterson and Tegmark which fully
incorporates the effect of isocurvature perturbations. Sufficient inflation is
a rare event, occurring for only roughly one in potentials. For models
generating sufficient inflation, we find that the majority of runs satisfy
current constraints from WMAP. The scalar spectral index is less than 1 in all
runs. The tensor-to-scalar ratio is below the current limit, while typically
large enough to be detected by next-generation CMB experiments and perhaps also
by Planck. In many cases the inflationary consistency equation is broken by the
effect of isocurvature modes.Comment: 24 pages with 8 figures incorporated, matches version accepted by
JCA
CTRP3 and Serum Triglycerides in Children Aged 7-10 Years
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Introduction The prevalence of obesity-related disorders has been steadily increasing over the past couple of decades. Diseases that were once only detected in adults are now prevalent in children, such as hyperlipidemia. The adipose tissue-derived hormonal factor C1q TNF Related Protein 3 (CTRP3) has been linked to triglyceride regulation especially in animal models. However, the relationship between circulating CTRP3 levels and obesity-related disorders in human subjects is controversial. CTRP3 can circulate in different oligomeric complexes: trimeric (kDa), middle molecular weight (100–300 kDa), and high molecular weight (HMW) oligomeric complexes (\u3e300 kDa). Previous work has identified that it is not the total amount of CTRP3 present in the serum, but the specific circulating oligomeric complexes that appear to be indicative of the relationship between CTRP3 and serum lipids levels. However, this work has not been examined in children. Therefore, the purpose of this study was to compare the levels of different oligomeric complexes of CTRP3 and circulating lipid levels among young children (aged 7–10 years). Methods Morphometric data and serum samples were collected and analyzed from a cross-sectional population of 62 children of self-identified Hispanic origin from a community health center, between 2015 and 2016. Serum analysis included adiponectin, insulin, leptin, ghrelin, glucagon, C-reactive peptide, triglyceride, cholesterol, IL-6, TNF, and CTRP3. Correlation analyses were conducted to explore the relationships between CTRP3 and other biomarkers. Results Total CTRP3 concentrations were significantly positively correlated with total cholesterol and HDL cholesterol. Whereas, HMW CTRP3 was not significantly associated with any variable measured. Conversely, the middle molecular weight (MMW) CTRP3 was negatively correlated with triglycerides levels, and very low-density lipoprotein (VLDL), insulin, and body mass index (BMI). The negative correlations between MMW CTRP3 and triglycerides and VLDLs were particularly strong (r2 = -0.826 and -0.827, respectively). Conclusion Overall, these data indicate that the circulating oligomeric state of CTRP3 and not just total CTRP3 level is important for understanding the association between CTRP3 and metabolic diseases. Further, this work indicates that MMW CTRP3 plays an important role in triglyceride and VLDL regulation which requires further study
The Adipokine C1q Tnf Related Protein 3 (CTRP3) Is Elevated in the Breast Milk of Obese Mothers
Background C1q TNF related protein 3 (CTRP3) is a relatively novel hormonal factor primarily derived from adipose tissue and has anti-diabetic properties. To determine if CTRP3 could play a role in early childhood development, the purpose of this study was to establish the presence of CTRP3 in breast milk (BM) and to determine whether CTRP3 levels were correlated with pregravid obesity status of the mother. Methods Breast milk was collected from breast-feeding mothers who had a pregravid body mass index (BMI) classification of normal weight (BMI 18–25 kg/m2, n = 23) or obese (BMI \u3e 30 kg/m2, n = 14). Immunoprecipitation followed by immunoblot analysis confirmed the presence of CTRP3 in BM. The concentration of CTRP3 in BM samples was determined by ELISA. Additional bioactive components were also measured by commercially available assays: ghrelin, insulin, leptin, adiponectin, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and glucose. Bioactive components in normal weight and obese mothers were compared using unpaired t-test (parametric) and Mann–Whitney U-test (non-parametric), as appropriate. Results The primary findings of this study are that the adipokine CTRP3 is present in BM and CTRP3 levels are increased with pregravid obesity. Additionally, this study independently confirmed previous work that BM from obese mothers has a higher concentration of insulin and leptin. Further, no differences were observed in BM between obese and normal weight mothers in ghrelin, adiponectin, IL-6, TNF-α, or glucose levels. Conclusion This study identified a novel factor in BM, CTRP3, and showed that BM CTRP3 levels higher in obese mothers. Because of the purported insulin sensitizing effect of CTRP3, it is possible that the elevated levels of CTRP3 in the BM of obese mothers may offset negative effects of elevated leptin and insulin levels in the BM of obese mothers. Future studies will need to be conducted to determine the relevance of CTRP3 in BM and to examine the presence of other adipose tissue-derived hormonal factors
- …