7,094 research outputs found
The ozone oxidation of ethylene as it pertains to air pollution
Reaction kinetics of ozone oxidation of ethylene pertinent to air pollutio
Edge diffracted caustic fields
The fields near a caustic created by an edge diffraction process are computed using the equivalent current concept. These fields are shown to have the property commonly associated with ray optical analysis or the Geometrical Theory of Diffraction (GTD), e.g., a 90 deg phase shift as the ray passes through the caustic. The present effort is directed toward consideration of the caustic created by an edge diffraction process. Particular attention is focused on electromagnetic excitation. The acoustic excitation for the hard boundary condition is outlined in an appendix. In addition, goal is to establish the extent of the caustic region. This is of particular importance when a ray optical solution involves multiply-diffracted terms in that the minimum size of the body that can be analyzed may be restricted by the extent of the caustic, i.e., the 90 deg phase shift used in ray optical analysis may be introduced only if the caustic is contained on the surface being studied
UTD analysis of electromagnetic scattering by flat structures
The different scattering mechanisms that contribute to the radar cross of finite flat plates were identified and analyzed. The geometrical theory of diffraction, the equivalent current and the corner diffraction are used for this study. A study of the cross polarized field for a monopole mounted on a plate is presented, using novel edge wave mechanism in the analysis. The results are compared with moment method solutions as well as measured data
Material parameter determination from scattering measurements
The electrical, macroscopic performance of isotropic material can generally be described through their constitutive scalar parameters, permittivity and permeability which are symbolically represented by epsilon and mu, respectively. These parameters relate the electric and magnetic flux densities to the electric and magnetic fields through the following relationships: (1) D=epsilonE; and (2) B=muH. It is through these parameters that the interaction of electromagnetic waves with material can be quantized in terms of reflection and transmission coefficients, and propagation and attenuation factors
Horn antenna with v-shaped corrugated surface
Corrugated shape is easily machined for millimeter wave application and is better suited for folding antenna designs. Measured performance showed ""V'' corrugations and rectangular corrugations have nearly the same pattern beamwidth, gain, and impedance. Also, ""V'' corrugations have higher relative power loss
Estimating normal mixture parameters from the distribution of a reduced feature vector
A FORTRAN computer program was written and tested. The measurements consisted of 1000 randomly chosen vectors representing 1, 2, 3, 7, and 10 subclasses in equal portions. In the first experiment, the vectors are computed from the input means and covariances. In the second experiment, the vectors are 16 channel measurements. The starting covariances were constructed as if there were no correlation between separate passes. The biases obtained from each run are listed
Calculation of the effects of ice on the backscatter of a ground plane
Described is a technique for examining the effect of a rough ice layer on the backscatter of a ground plane. The technique is applied to the special case of a rough ice layer that is periodic in space. By assuming that the roughness is periodic, the backscatter of the ground plane can be found from the backscatter of a single period. Backscatter calculations are presented for a single period in which the thickness of the ice layer has a Gaussian shape
The calibration of photographic and spectroscopic films: Reciprocity failure and thermal responses of IIaO film at liquid nitrogen temperatures
Reciprocity failure was examined for IIaO spectroscopic film. The results indicate reciprocity failure occurs at three distinct minimum points in time; 15 min, 30 min and 90 min. The results are unique because theory suggests only one minimum reciprocity failure point should occur. When incubating 70mm IIaO film for 15 and 30 min at temperatures of 30, 40, 50, and 60 C and then placing in a liquid nitrogen bath at a temperature of -190 C the film demonstrated an increase of the optical density when developed at a warm-up time of 30 min. Longer warm-up periods of 1, 2 and 3 hrs yield a decrease in optical density of the darker wedge patterns; whereas, shorter warm-up times yield an overall increase in the optical densities
Radar Cross Section Studies/Compact Range Research
A summary is given of the achievements of NASA Grant NsG-1613 by Ohio State University from May 1, 1987 to April 30, 1988. The major topics covered are as follows: (1) electromagnetic scattering analysis; (2) indoor scattering measurement systems; (3) RCS control; (4) waveform processing techniques; (5) material scattering and design studies; (6) design and evaluation of design studies; and (7) antenna studies. Major progress has been made in each of these areas as verified by the numerous publications produced
Radar cross section studies
The ultimate goal is to generate experimental techniques and computer codes of rather general capability that would enable the aerospace industry to evaluate the scattering properties of aerodynamic shapes. Another goal involves developing an understanding of scattering mechanisms so that modification of the vehicular structure could be introduced within constraints set by aerodynamics. The development of indoor scattering measurement systems with special attention given to the compact range is another goal. There has been considerable progress in advancing state-of-the-art scattering measurements and control and analysis of the electromagnetic scattering from general targets
- …