1 research outputs found
High Resolution Valley Spectroscopy of Si Quantum Dots
We study an accumulation mode Si/SiGe double quantum dot (DQD) containing a
single electron that is dipole coupled to microwave photons in a
superconducting cavity. Measurements of the cavity transmission reveal
dispersive features due to the DQD valley states in Si. The occupation of the
valley states can be increased by raising temperature or applying a finite
source-drain bias across the DQD, resulting in an increased signal. Using
cavity input-output theory and a four-level model of the DQD, it is possible to
efficiently extract valley splittings and the inter- and intra-valley tunnel
couplings