25 research outputs found

    Meta-Xenakis: New Perspectives on Iannis Xenakis’s Life, Work, and Legacies (PDF)

    No full text
    Meta-Xenakis offers readers a comprehensive collection of insights into the history, works and legacy of Iannis Xenakis, one of the twentieth century’s most significant creative figures. It presents a transcontinental engagement with his life and output, focusing as much on the impact of the questions he posed as on the accomplishments of his body of work. This volume evolved out of the multi-modal, international Meta-Xenakis Consortium’s artistic and scholarly events commemorating his centenary. Informative and comprehensive, contributions span subjects including music composition, creative pedagogy, aesthetics, game theory, architecture, and the social and political contexts in which Xenakis operated. The book is organized in eight sections, centered on different facets of Xenakis’s work and reception. It includes a digital archive of audio and visual media from the events staged throughout 2022, as well as computer software. Bringing into conversation the diverse perspectives and insights of researchers, musicians and artists, this volume serves as a foundational resource for future research on the life and work of Xenakis. It will be of interest to students, scholars, and practitioners across a range of disciplines including music, architecture, cybernetics and computation, and the digital arts

    Promoter Effects on Nickel-Supported Magnesium Oxide Catalysts for the Carbon Dioxide Reforming of Methane

    No full text
    The nickel catalysts supported on bare MgO and its binary Mg–Al, Mg–La, and Mg–Fe metal oxides were prepared and used for carbon dioxide reforming of methane to syngas. The effects of Al, La, and Fe metal oxides on the structural properties, reducibility, and metal–support interaction of the Ni catalysts supported on MgO-based binary metal oxide were investigated. The X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and hydrogen temperature-programmed reduction (H<sub>2</sub>-TPR) analyses show that the nickel nanoparticles were highly dispersed on the supports. It is found that the Al ions can be well-incorporated into the MgO lattice to form uniform Mg–Al oxides, while isolated lanthanum oxides and iron oxides were observed in the Mg–La and Mg–Fe binary systems by TEM, respectively. Ni/Mg–Al metal oxide exhibits greatly improved catalytic activity, owing to the formation of a homogeneous Mg–Al oxide matrix with small particle sizes of Ni nanoparticles compared to bare Ni/MgO. Very low conversions for both CH<sub>4</sub> and CO<sub>2</sub> were obtained on Ni/Mg–La and Ni/Mg–Fe metal oxides, even at a high temperature of 800 °C, as a result of the incomplete reduction of the nickel nanoparticles

    What Factors Determine the Retention Behavior of Engineered Nanomaterials in Saturated Porous Media?

    No full text
    A fundamental problem associated with the vertical transport of engineered nanomaterials (ENMs) in saturated porous media is the occurrence of nonexponential, for example, nonmonotonic or linearly increasing, retention profiles. To investigate this problem, we compiled an extensive database of ENMs transport experiments in saturated porous media. Using this database we trained a decision tree that shows the order of importance, and range of influence, of the physicochemical factors that control the retention profile shape. Our results help identify domains where current particle-transport models can be used, but also highlight, for the first time, large domains where nonexponential retention profiles dominate and new approaches are needed to understand ENM transport. Importantly, highly advective flow and high ENM influent mass can mask the influence of other physicochemical factors on the retention profile shape; notably, this occurs in 50% of the experiments investigated. Where the relationship between physicochemical factors and retention profile shape can be investigated in detail, our results agree with, and provide validation for, the current understanding of how these factors influence ENM transport

    Fish biomass, abundance and size on Ulithi Atoll.

    No full text
    <p>Fish trophic categories (Piscivores, Carnivores, Corallivores, Planktivores, and Herbivores) are compared among site groups (cluster 1: uninhabited, oceanic; cluster 2: inhabited, oceanic; cluster 3: inhabited & uninhabited, lagoonal) for biomass (a-e), numerical abundance (g-k) and average length (TL, m-q). The stacked bar plots (f & l) show the mean values from sites within each of the 3 clusters, and the dot chart (r) compares the mean TL for fishes from trophic categories found within sites from the 3 clusters. The box-and-whisker plots show the median value (dark horizontal bar); the box length is the interquartile range, the upper whisker marks the smaller of the maximum value and quartile 3+1.5 interquartile range (IQR), and the lower whisker marks the larger of the smallest value and quartile 1–1.5 IQR. Outliers are not shown. Plots produced using the R package <i>graphics</i>, version 3.3.1.</p

    Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia

    No full text
    <div><p>The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1–oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2–oceanic and inhabited (high human impact); and cluster 3–lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an ‘opportunistic’ scleractinian coral (<i>Montipora</i> sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.</p></div
    corecore