237 research outputs found

    Evaluation of Giga-bit Ethernet Instrumentation for SalSA Electronics Readout (GEISER)

    Full text link
    An instrumentation prototype for acquiring high-speed transient data from an array of high bandwidth antennas is presented. Multi-kilometer cable runs complicate acquisition of such large bandwidth radio signals from an extensive antenna array. Solutions using analog fiber optic links are being explored, though are very expensive. We propose an inexpensive solution that allows for individual operation of each antenna element, operating at potentially high local self-trigger rates. Digitized data packets are transmitted to the surface via commercially available Giga-bit Ethernet hardware. Events are then reconstructed on a computer farm by sorting the received packets using standard networking gear, eliminating the need for custom, very high-speed trigger hardware. Such a system is completely scalable and leverages the hugh capital investment made by the telecommunications industry. Test results from a demonstration prototype are presented.Comment: 8 pages, to be submitted to NIM

    Antiquark nuggets as dark matter: New constraints and detection prospects

    Full text link
    Current evidence for dark matter in the universe does not exclude heavy composite nuclear-density objects consisting of bound quarks or antiquarks over a significant range of masses. Here we analyze one such proposed scenario, which hypothesizes antiquark nuggets with a range of log10(B) = 24-30 with specific predictions for spectral emissivity via interactions with normal matter. We find that, if these objects make up the majority of the dark matter density in the solar neighborhood, their radiation efficiency in solids is marginally constrained, due to limits from the total geothermal energy budget of the Earth. At allowed radiation efficiencies, the number density of such objects can be constrained to be well below dark matter densities by existing radio data over a mass range currently not restricted by other methods.Comment: 6 pages, 3 figures, revised references; submitted to PR

    The StarLight Space Interferometer

    Get PDF
    Two papers describe the StarLight space interferometer a Michelson interferometer that would be implemented by two spacecraft flying in formation. The StarLight formation flying interferometer project has been testing and demonstrating engineering concepts for a new generation of space interferometers that would be employed in a search for extrasolar planets and in astrophysical investigations. As described in the papers, the original StarLight concept called for three spacecraft, and the main innovation embodied is a modification that makes it possible to reduce complexity by eliminating the third spacecraft. The main features of the modification are (1) introduction of an optical delay line on one spacecraft and (2) controlling the flying formation such that the two spacecraft are located at two points along a specified parabola so as to define the required baseline of specified length (which could be varied up to 125 m) perpendicular to the axis of the parabola. One of the papers presents a detailed description of the optical layout and discusses computational modeling of the performance; the other paper presents an overview of the requirements for operation and design, the overall architecture, and subsystems
    corecore