129 research outputs found
Ensemble tractography
Fiber tractography uses diffusion MRI to estimate the trajectory and cortical projection zones of white matter fascicles in the living human brain. There are many different tractography algorithms and each requires the user to set several parameters, such as curvature threshold. Choosing a single algorithm with a specific parameters sets poses two challenges. First, different algorithms and parameter values produce different results. Second, the optimal choice of algorithm and parameter value may differ between different white matter regions or different fascicles, subjects, and acquisition parameters. We propose using ensemble methods to reduce algorithm and parameter dependencies. To do so we separate the processes of fascicle generation and evaluation. Specifically, we analyze the value of creating optimized connectomes by systematically combining candidate fascicles from an ensemble of algorithms (deterministic and probabilistic) and sweeping through key parameters (curvature and stopping criterion). The ensemble approach leads to optimized connectomes that provide better cross-validatedprediction error of the diffusion MRI data than optimized connectomes generated using the singlealgorithms or parameter set. Furthermore, the ensemble approach produces connectomes that contain both short- and long-range fascicles, whereas single-parameter connectomes are biased towards one or the other. In summary, a systematic ensemble tractography approach can produce connectomes that are superior to standard single parameter estimates both for predicting the diffusion measurements and estimating white matter fascicles.Fil: Takemura, Hiromasa. University of Stanford; Estados Unidos. Osaka University; JapónFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Wandell, Brian A.. University of Stanford; Estados UnidosFil: Pestilli, Franco. Indiana University; Estados Unido
A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging
We use a multidimensional signal representation that integrates diffusion Magnetic Resonance Imaging (dMRI) and tractography (brain connections) using sparse tensor decomposition. The representation encodes brain connections (fibers) into a very-large, but sparse, core tensor and allows to predict dMRI measurements based on a dictionary of diffusion signals. We propose an algorithm to learn the constituent parts of the model from a dataset. The algorithm assumes a tractography model (support of core tensor) and iteratively minimizes the Frobenius norm of the error as a function of the dictionary atoms, the values of nonzero entries in the sparse core tensor and the fiber weights. We use a nonparametric dictionary learning (DL) approach to estimate signal atoms. Moreover, the algorithm is able to learn multiple dictionaries associated to different brain locations (voxels) allowing for mapping distinctive tissue types. We illustrate the algorithm through results obtained on a large in-vivo high-resolution dataset.Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Indiana University; Estados UnidosFil: Cichocki, Andrzej. Labsp. Riken; JapónFil: Pestilli, Franco. Indiana University; Estados UnidosSignal Processing with Adaptive Sparse Structured Representations workshopLisboaPortugalUniversity of Lisbo
Unified representation of tractography and diffusion-weighted MRI data using sparse multidimensional arrays
Recently, linear formulations and convex optimization methods have been proposed to predict diffusion-weighted Magnetic Resonance Imaging (dMRI) data given estimates of brain connections generated using tractography algorithms. The size of the linear models comprising such methods grows with both dMRI data and connectome resolution, and can become very large when applied to modern data. In this paper, we introduce a method to encode dMRI signals and large connectomes, i.e., those that range from hundreds of thousands to millions of fascicles (bundles of neuronal axons), by using a sparse tensor decomposition. We show that this tensor decomposition accurately approximates the Linear Fascicle Evaluation (LiFE) model, one of the recently developed linear models. We provide a theoretical analysis of the accuracy of the sparse decomposed model, LiFE_SD, and demonstrate that it can reduce the size of the model significantly. Also, we develop algorithms to implement the optimization solver using the tensor representation in an efficient way.Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Indiana University; Estados UnidosFil: Sporns, Olaf. Indiana University; Estados UnidosFil: Saykin, Andy. Indiana University; Estados UnidosFil: Pestilli, Franco. Indiana University; Estados Unidos31st Conference on Neural Information Processing SystemsLong BeachEstados UnidosNational Science Foundatio
Shape-Attributes of Brain Structures as Biomarkers for Alzheimer’s Disease
We describe a fully automatic framework for classification of two types of dementia based on the differences in the shape of brain structures. We consider Alzheimer’s disease (AD), mild cognitive impairment of individuals who converted to AD within 18 months (MCIc), and normal controls (NC). Our approach uses statistical learning and a feature space consisting of projection-based shape descriptors, allowing for canonical representation of brain regions. Our framework automatically identifies the structures most affected by the disease. We evaluate our results by comparing to other methods using a standardized data set of 375 adults available from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Our framework is sensitive to identifying the onset of Alzheimer’s disease, achieving up to 88.13% accuracy in classifying MCIc versus NC, outperforming previous methods.National Science Foundation (U.S.) (1502435
sparsegl: An R Package for Estimating Sparse Group Lasso
The sparse group lasso is a high-dimensional regression technique that is useful for problems whose predictors have a naturally grouped structure and where sparsity is encouraged at both the group and individual predictor level. In this paper we discuss a new R package for computing such regularized models. The intention is to provide highly optimized solution routines enabling analysis of very large datasets, especially in the context of sparse design matrices
Evaluating the accuracy of diffusion MRI models in white matter
Models of diffusion MRI within a voxel are useful for making inferences about
the properties of the tissue and inferring fiber orientation distribution used
by tractography algorithms. A useful model must fit the data accurately.
However, evaluations of model-accuracy of some of the models that are commonly
used in analyzing human white matter have not been published before. Here, we
evaluate model-accuracy of the two main classes of diffusion MRI models. The
diffusion tensor model (DTM) summarizes diffusion as a 3-dimensional Gaussian
distribution. Sparse fascicle models (SFM) summarize the signal as a linear sum
of signals originating from a collection of fascicles oriented in different
directions. We use cross-validation to assess model-accuracy at different
gradient amplitudes (b-values) throughout the white matter. Specifically, we
fit each model to all the white matter voxels in one data set and then use the
model to predict a second, independent data set. This is the first evaluation
of model-accuracy of these models. In most of the white matter the DTM predicts
the data more accurately than test-retest reliability; SFM model-accuracy is
higher than test-retest reliability and also higher than the DTM, particularly
for measurements with (a) a b-value above 1000 in locations containing fiber
crossings, and (b) in the regions of the brain surrounding the optic
radiations. The SFM also has better parameter-validity: it more accurately
estimates the fiber orientation distribution function (fODF) in each voxel,
which is useful for fiber tracking
sparsegl: An R Package for Estimating Sparse Group Lasso
The sparse group lasso is a high-dimensional regression technique that is
useful for problems whose predictors have a naturally grouped structure and
where sparsity is encouraged at both the group and individual predictor level.
In this paper we discuss a new R package for computing such regularized models.
The intention is to provide highly optimized solution routines enabling
analysis of very large datasets, especially in the context of sparse design
matrices.Comment: 18 pages, 9 figures, 1 tabl
Anatomically-Informed Multiple Linear Assignment Problems for White Matter Bundle Segmentation
Segmenting white matter bundles from human tractograms is a task of interest
for several applications. Current methods for bundle segmentation consider
either only prior knowledge about the relative anatomical position of a bundle,
or only its geometrical properties. Our aim is to improve the results of
segmentation by proposing a method that takes into account information about
both the underlying anatomy and the geometry of bundles at the same time. To
achieve this goal, we extend a state-of-the-art example-based method based on
the Linear Assignment Problem (LAP) by including prior anatomical information
within the optimization process. The proposed method shows a significant
improvement with respect to the original method, in particular on small
bundles
- …