147 research outputs found

    Absolute Continuity Theorem for Random Dynamical Systems on RdR^d

    Full text link
    In this article we provide a proof of the so called absolute continuity theorem for random dynamical systems on RdR^d which have an invariant probability measure. First we present the construction of local stable manifolds in this case. Then the absolute continuity theorem basically states that for any two transversal manifolds to the family of local stable manifolds the induced Lebesgue measures on these transversal manifolds are absolutely continuous under the map that transports every point on the first manifold along the local stable manifold to the second manifold, the so-called Poincar\'e map or holonomy map. In contrast to known results, we have to deal with the non-compactness of the state space and the randomness of the random dynamical system.Comment: 46 page

    Lifting Measures to Inducing Schemes

    Full text link
    In this paper we study the liftability property for piecewise continuous maps of compact metric spaces, which admit inducing schemes in the sense of Pesin and Senti [PS05, PS06]. We show that under some natural assumptions on the inducing schemes - which hold for many known examples - any invariant ergodic Borel probability measure of sufficiently large entropy can be lifted to the tower associated with the inducing scheme. The argument uses the construction of connected Markov extensions due to Buzzi [Buz99], his results on the liftability of measures of large entropy, and a generalization of some results by Bruin [Bru95] on relations between inducing schemes and Markov extensions. We apply our results to study the liftability problem for one-dimensional cusp maps (in particular, unimodal and multimodal maps) and for some multidimensional maps.Comment: 28 pages. Final version. To appear in Ergodic Theory and Dynamical System

    Topological pressure of simultaneous level sets

    Full text link
    Multifractal analysis studies level sets of asymptotically defined quantities in a topological dynamical system. We consider the topological pressure function on such level sets, relating it both to the pressure on the entire phase space and to a conditional variational principle. We use this to recover information on the topological entropy and Hausdorff dimension of the level sets. Our approach is thermodynamic in nature, requiring only existence and uniqueness of equilibrium states for a dense subspace of potential functions. Using an idea of Hofbauer, we obtain results for all continuous potentials by approximating them with functions from this subspace. This technique allows us to extend a number of previous multifractal results from the C1+ϵC^{1+\epsilon} case to the C1C^1 case. We consider ergodic ratios Snϕ/SnψS_n \phi/S_n \psi where the function ψ\psi need not be uniformly positive, which lets us study dimension spectra for non-uniformly expanding maps. Our results also cover coarse spectra and level sets corresponding to more general limiting behaviour.Comment: 32 pages, minor changes based on referee's comment

    Exponential speed of mixing for skew-products with singularities

    Full text link
    Let f:[0,1]×[0,1]1/2[0,1]×[0,1]f: [0,1]\times [0,1] \setminus {1/2} \to [0,1]\times [0,1] be the CC^\infty endomorphism given by f(x,y)=(2x[2x],y+c/x1/2[y+c/x1/2]),f(x,y)=(2x- [2x], y+ c/|x-1/2|- [y+ c/|x-1/2|]), where cc is a positive real number. We prove that ff is topologically mixing and if c>1/4c>1/4 then ff is mixing with respect to Lebesgue measure. Furthermore we prove that the speed of mixing is exponential.Comment: 23 pages, 3 figure

    Well-posed infinite horizon variational problems on a compact manifold

    Full text link
    We give an effective sufficient condition for a variational problem with infinite horizon on a compact Riemannian manifold M to admit a smooth optimal synthesis, i. e. a smooth dynamical system on M whose positive semi-trajectories are solutions to the problem. To realize the synthesis we construct a well-projected to M invariant Lagrange submanifold of the extremals' flow in the cotangent bundle T*M. The construction uses the curvature of the flow in the cotangent bundle and some ideas of hyperbolic dynamics

    Ensemble averages and nonextensivity at the edge of chaos of one-dimensional maps

    Full text link
    Ensemble averages of the sensitivity to initial conditions ξ(t)\xi(t) and the entropy production per unit time of a {\it new} family of one-dimensional dissipative maps, xt+1=1ae1/xtz(z>0)x_{t+1}=1-ae^{-1/|x_t|^z}(z>0), and of the known logistic-like maps, xt+1=1axtz(z>1)x_{t+1}=1-a|x_t|^z(z>1), are numerically studied, both for {\it strong} (Lyapunov exponent λ1>0\lambda_1>0) and {\it weak} (chaos threshold, i.e., λ1=0\lambda_1=0) chaotic cases. In all cases we verify that (i) both [lnqx(x1q1)/(1q);ln1x=lnx] [\ln_q x \equiv (x^{1-q}-1)/(1-q); \ln_1 x=\ln x] and <Sq>[Sq(1ipiq)/(q1);S1=ipilnpi]<S_q > [S_q \equiv (1-\sum_i p_i^q)/(q-1); S_1=-\sum_i p_i \ln p_i] {\it linearly} increase with time for (and only for) a special value of qq, qsenavq_{sen}^{av}, and (ii) the {\it slope} of andthatof and that of {\it coincide}, thus interestingly extending the well known Pesin theorem. For strong chaos, qsenav=1q_{sen}^{av}=1, whereas at the edge of chaos, qsenav(z)<1q_{sen}^{av}(z)<1.Comment: 5 pages, 5 figure

    A review of linear response theory for general differentiable dynamical systems

    Full text link
    The classical theory of linear response applies to statistical mechanics close to equilibrium. Away from equilibrium, one may describe the microscopic time evolution by a general differentiable dynamical system, identify nonequilibrium steady states (NESS), and study how these vary under perturbations of the dynamics. Remarkably, it turns out that for uniformly hyperbolic dynamical systems (those satisfying the "chaotic hypothesis"), the linear response away from equilibrium is very similar to the linear response close to equilibrium: the Kramers-Kronig dispersion relations hold, and the fluctuation-dispersion theorem survives in a modified form (which takes into account the oscillations around the "attractor" corresponding to the NESS). If the chaotic hypothesis does not hold, two new phenomena may arise. The first is a violation of linear response in the sense that the NESS does not depend differentiably on parameters (but this nondifferentiability may be hard to see experimentally). The second phenomenon is a violation of the dispersion relations: the susceptibility has singularities in the upper half complex plane. These "acausal" singularities are actually due to "energy nonconservation": for a small periodic perturbation of the system, the amplitude of the linear response is arbitrarily large. This means that the NESS of the dynamical system under study is not "inert" but can give energy to the outside world. An "active" NESS of this sort is very different from an equilibrium state, and it would be interesting to see what happens for active states to the Gallavotti-Cohen fluctuation theorem.Comment: 19 pages, 2 figure

    Non-uniqueness of ergodic measures with full Hausdorff dimension on a Gatzouras-Lalley carpet

    Full text link
    In this note, we show that on certain Gatzouras-Lalley carpet, there exist more than one ergodic measures with full Hausdorff dimension. This gives a negative answer to a conjecture of Gatzouras and Peres

    Oseledets' Splitting of Standard-like Maps

    Get PDF
    For the class of differentiable maps of the plane and, in particular, for standard-like maps (McMillan form), a simple relation is shown between the directions of the local invariant manifolds of a generic point and its contribution to the finite-time Lyapunov exponents (FTLE) of the associated orbit. By computing also the point-wise curvature of the manifolds, we produce a comparative study between local Lyapunov exponent, manifold's curvature and splitting angle between stable/unstable manifolds. Interestingly, the analysis of the Chirikov-Taylor standard map suggests that the positive contributions to the FTLE average mostly come from points of the orbit where the structure of the manifolds is locally hyperbolic: where the manifolds are flat and transversal, the one-step exponent is predominantly positive and large; this behaviour is intended in a purely statistical sense, since it exhibits large deviations. Such phenomenon can be understood by analytic arguments which, as a by-product, also suggest an explicit way to point-wise approximate the splitting.Comment: 17 pages, 11 figure

    Entropy and Poincar\'e recurrence from a geometrical viewpoint

    Full text link
    We study Poincar\'e recurrence from a purely geometrical viewpoint. We prove that the metric entropy is given by the exponential growth rate of return times to dynamical balls. This is the geometrical counterpart of Ornstein-Weiss theorem. Moreover, we show that minimal return times to dynamical balls grow linearly with respect to its length. Finally, some interesting relations between recurrence, dimension, entropy and Lyapunov exponents of ergodic measures are given.Comment: 11 pages, revised versio
    corecore