86 research outputs found

    Structure induction by lossless graph compression

    Full text link
    This work is motivated by the necessity to automate the discovery of structure in vast and evergrowing collection of relational data commonly represented as graphs, for example genomic networks. A novel algorithm, dubbed Graphitour, for structure induction by lossless graph compression is presented and illustrated by a clear and broadly known case of nested structure in a DNA molecule. This work extends to graphs some well established approaches to grammatical inference previously applied only to strings. The bottom-up graph compression problem is related to the maximum cardinality (non-bipartite) maximum cardinality matching problem. The algorithm accepts a variety of graph types including directed graphs and graphs with labeled nodes and arcs. The resulting structure could be used for representation and classification of graphs.Comment: 10 pages, 7 figures, 2 tables published in Proceedings of the Data Compression Conference, 200

    Bayesian Information Extraction Network

    Full text link
    Dynamic Bayesian networks (DBNs) offer an elegant way to integrate various aspects of language in one model. Many existing algorithms developed for learning and inference in DBNs are applicable to probabilistic language modeling. To demonstrate the potential of DBNs for natural language processing, we employ a DBN in an information extraction task. We show how to assemble wealth of emerging linguistic instruments for shallow parsing, syntactic and semantic tagging, morphological decomposition, named entity recognition etc. in order to incrementally build a robust information extraction system. Our method outperforms previously published results on an established benchmark domain.Comment: 6 page

    Learning from Scarce Experience

    Full text link
    Searching the space of policies directly for the optimal policy has been one popular method for solving partially observable reinforcement learning problems. Typically, with each change of the target policy, its value is estimated from the results of following that very policy. This requires a large number of interactions with the environment as different polices are considered. We present a family of algorithms based on likelihood ratio estimation that use data gathered when executing one policy (or collection of policies) to estimate the value of a different policy. The algorithms combine estimation and optimization stages. The former utilizes experience to build a non-parametric representation of an optimized function. The latter performs optimization on this estimate. We show positive empirical results and provide the sample complexity bound.Comment: 8 pages 4 figure

    Reinforcement Learning by Policy Search

    Get PDF
    One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network