28 research outputs found
Hierarchical mutual information for the comparison of hierarchical community structures in complex networks
The quest for a quantitative characterization of community and modular
structure of complex networks produced a variety of methods and algorithms to
classify different networks. However, it is not clear if such methods provide
consistent, robust and meaningful results when considering hierarchies as a
whole. Part of the problem is the lack of a similarity measure for the
comparison of hierarchical community structures. In this work we give a
contribution by introducing the {\it hierarchical mutual information}, which is
a generalization of the traditional mutual information, and allows to compare
hierarchical partitions and hierarchical community structures. The {\it
normalized} version of the hierarchical mutual information should behave
analogously to the traditional normalized mutual information. Here, the correct
behavior of the hierarchical mutual information is corroborated on an extensive
battery of numerical experiments. The experiments are performed on artificial
hierarchies, and on the hierarchical community structure of artificial and
empirical networks. Furthermore, the experiments illustrate some of the
practical applications of the hierarchical mutual information. Namely, the
comparison of different community detection methods, and the study of the
consistency, robustness and temporal evolution of the hierarchical modular
structure of networks.Comment: 14 pages and 12 figure
Temporal network sparsity and the slowing down of spreading
Interactions in time-varying complex systems are often very heterogeneous at
the topological level (who interacts with whom) and at the temporal level (when
interactions occur and how often). While it is known that temporal
heterogeneities often have strong effects on dynamical processes, e.g. the
burstiness of contact sequences is associated with slower spreading dynamics,
the picture is far from complete. In this paper, we show that temporal
heterogeneities result in temporal sparsity} at the time scale of average
inter-event times, and that temporal sparsity determines the amount of slowdown
of Susceptible-Infectious (SI) spreading dynamics on temporal networks. This
result is based on the analysis of several empirical temporal network data
sets. An approximate solution for a simple network model confirms the
association between temporal sparsity and slowdown of SI spreading dynamics.
Since deterministic SI spreading always follows the fastest temporal paths, our
results generalize -- paths are slower to traverse because of temporal
sparsity, and therefore all dynamical processes are slower as well
La estabilidad como mecanismo de selección natural sobre redes de interacción en sistemas biológicos =
Tesis (Doctor en Física)--Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física, 2011.En este trabajo de investigación se propone un mecanismo evolutivo de carácter muy general que resulta en una posible explicación a la ubiquidad de ciertas propiedades de las redes de interacción en una gran variedad de sistemas biológicos que involucran desde las escalas microscópicas de las redes celulares hasta las escalas macroscópicas de las redes ecológicas. Este mecanismo consta principalmente de un criterio de selección basado en la estabilidad de la dinámica del sistema que subyace a la red. Dicho mecanismo es incorporado en un modelo a partir del cuál se concluye que de dicho mecanismo emergen redes de topologías complejas que comparten muchas de las propiedades observadas en las redes biológicas.Juan Ignacio Perotti.Tolerancia a ataques dirigidos y fallas aleatorias en redes
tróficas -- Sobre los datos obtenidos de la home page de A.G. Rossberg
Short-ranged memory model with preferential growth
In this work we introduce a variant of the Yule-Simon model for preferential growth by incorporating a finite kernel to model the effects of bounded memory. We characterize the properties of the model combining analytical arguments with extensive numerical simulations. In particular, we analyze the lifetime and popularity distributions by mapping the model dynamics to corresponding Markov chains and branching processes, respectively. These distributions follow power laws with well-defined exponents that are within the range of the empirical data reported in ecologies. Interestingly, by varying the innovation rate, this simple out-of-equilibrium model exhibits many of the characteristics of a continuous phase transition and, around the critical point, it generates time series with power-law popularity, lifetime and interevent time distributions, and nontrivial temporal correlations, such as a bursty dynamics in analogy with the activity of solar flares. Our results suggest that an appropriate balance between innovation and oblivion rates could provide an explanatory framework for many of the properties commonly observed in many complex systems.Fil: Schaigorodsky, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Perotti, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Almeira, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Billoni, Orlando Vito. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentin
Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis
Evidence of critical dynamics has been found recently in both experiments and models of large-scale brain dynamics. The understanding of the nature and features of such a critical regime is hampered by the relatively small size of the available connectome, which prevents, among other things, the determination of its associated universality class. To circumvent that, here we study a neural model defined on a class of small-world networks that share some topological features with the human connectome. We find that varying the topological parameters can give rise to a scale-invariant behavior either belonging to the mean-field percolation universality class or having nonuniversal critical exponents. In addition, we find certain regions of the topological parameter space where the system presents a discontinuous, i.e., noncritical, dynamical phase transition into a percolated state. Overall, these results shed light on the interplay of dynamical and topological roots of the complex brain dynamics.Fil: Zarepour Nasir Abadi, Mahdi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Perotti, Juan Ignacio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Billoni, Orlando Vito. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Chialvo, Dante Renato. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cannas, Sergio Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentin
Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study
: The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI
On the emergence of Zipf ’s law in music
Zipf's law is found when the vocabulary of long written texts is ranked according to the frequency of word occurrences, establishing a power-law decay for the frequency vs rank relation. This law is a robust statistical property observed even in ancient untranslated languages. Interestingly, this law seems to be also manifested in music records when several metrics – functioning as words in written texts – are used. Even though music can be regarded as a language, finding an accurate equivalent of the concept of words in music is difficult because it lacks a functional semantic. This raises the question of which is the appropriate choice of Zipfian units in music, which is extensive to other contexts where this law can emerge. In particular, this is still an open question in written texts, where several alternatives have been proposed as Zipfian units besides the canonical use of words. Seeking to validate a natural election of Zipfian units in music, in this work we find that Zipf's law emerges when a combination of chords and notes are chosen as Zipfian units. Our results are grounded on a consistent analysis of the statistical properties of music and texts, complemented with theoretical considerations that combine different reference models, including a simple model inspired in the Lempel–Ziv compression algorithm that we have devised to explain the emergence of Zipf's law as the consequence of languages evolving into more efficient forms of communication.Fil: Perotti, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Billoni, Orlando Vito. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentin
Hierarchical mutual information for the comparison of hierarchical community structures in complex networks
The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust, and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the hierarchical mutual information, which is a generalization of the traditional mutual information and makes it possible to compare hierarchical partitions and hierarchical community structures. The normalized version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies and on the hierarchical community structure of artificial and empirical networks. Furthermore, the experiments illustrate some of the practical applications of the hierarchical mutual information, namely the comparison of different community detection methods and the study of the consistency, robustness, and temporal evolution of the hierarchical modular structure of networks
Towards a generalization of information theory for hierarchical partitions
Complex systems often exhibit multiple levels of organization covering a wide range of physical scales, so the study of the hierarchical decomposition of their structure and function is frequently convenient. To better understand this phenomenon, we introduce a generalization of information theory that works with hierarchical partitions. We begin revisiting the recently introduced hierarchical mutual information (HMI), and show that it can be written as a level by level summation of classical conditional mutual information terms. Then, we prove that the HMI is bounded from above by the corresponding hierarchical joint entropy. In this way, in analogy to the classical case, we derive hierarchical generalizations of many other classical information-theoretic quantities. In particular, we prove that, as opposed to its classical counterpart, the hierarchical generalization of the variation of information is not a metric distance, but it admits a transformation into one. Moreover, focusing on potential applications of the existing developments of the theory, we show how to adjust by chance the HMI. We also corroborate and analyze all the presented theoretical results with exhaustive numerical computations, and include an illustrative application example of the introduced formalism. Finally, we mention some open problems that should be eventually addressed for the proposed generalization of information theory to reach maturity.Fil: Perotti, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Almeira, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Saracco, Fabio. IMT School for Advanced Studies Lucca; Itali