2,178 research outputs found

    Search for the 125 GeV Standard Model Higgs Boson Decaying Via H→WW→lΜjj at √s = 8 TeV

    Get PDF
    The Higgs boson discovery was announced on July 4th, 2012. It was measured to have a mass of 125.7 ± 0.3 (stat) ± 0.3 (syst) GeV and since then boson has been seen in many decay paths, including the H→γγ, H→ZZ→4l, H→τ τ, and H→WâșW⁻→lΜlΜ channels. However, no one has looked for the boson at this mass using the H→WâșW⁻→lΜjj decay channel. This dissertation presents a search for the ∌125 GeV Higgs in semi-leptonic W decays using both traditional kinematically discriminating variables as well as a matrix element technique. The data for this analysis was collected in 2012 by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) and amounts to 19.7 fb⁻Âč of proton-proton collisions at a center of mass energy of 8 TeV. Although this analysis presents a step forward in complexity, we were still not able to see a significant excess above the standard model background prediction. However, we were able to set an upper limit of 5.4 on σ/σSM at the 95% confidence level for the semi-leptonic W decay of the Higgs boson. These represent some of the first such limits recorded

    Optimizing High Throughput Inference on Graph Neural Networks at Shared Computing Facilities with the NVIDIA Triton Inference Server

    Full text link
    With machine learning applications now spanning a variety of computational tasks, multi-user shared computing facilities are devoting a rapidly increasing proportion of their resources to such algorithms. Graph neural networks (GNNs), for example, have provided astounding improvements in extracting complex signatures from data and are now widely used in a variety of applications, such as particle jet classification in high energy physics (HEP). However, GNNs also come with an enormous computational penalty that requires the use of GPUs to maintain reasonable throughput. At shared computing facilities, such as those used by physicists at Fermi National Accelerator Laboratory (Fermilab), methodical resource allocation and high throughput at the many-user scale are key to ensuring that resources are being used as efficiently as possible. These facilities, however, primarily provide CPU-only nodes, which proves detrimental to time-to-insight and computational throughput for workflows that include machine learning inference. In this work, we describe how a shared computing facility can use the NVIDIA Triton Inference Server to optimize its resource allocation and computing structure, recovering high throughput while scaling out to multiple users by massively parallelizing their machine learning inference. To demonstrate the effectiveness of this system in a realistic multi-user environment, we use the Fermilab Elastic Analysis Facility augmented with the Triton Inference Server to provide scalable and high throughput access to a HEP-specific GNN and report on the outcome.Comment: 20 pages, 14 figures, submitted to "Computing and Software for Big Science

    Data Science and Machine Learning in Education

    Full text link
    The growing role of data science (DS) and machine learning (ML) in high-energy physics (HEP) is well established and pertinent given the complex detectors, large data, sets and sophisticated analyses at the heart of HEP research. Moreover, exploiting symmetries inherent in physics data have inspired physics-informed ML as a vibrant sub-field of computer science research. HEP researchers benefit greatly from materials widely available materials for use in education, training and workforce development. They are also contributing to these materials and providing software to DS/ML-related fields. Increasingly, physics departments are offering courses at the intersection of DS, ML and physics, often using curricula developed by HEP researchers and involving open software and data used in HEP. In this white paper, we explore synergies between HEP research and DS/ML education, discuss opportunities and challenges at this intersection, and propose community activities that will be mutually beneficial.Comment: Contribution to Snowmass 202

    Search for stop and higgsino production using diphoton Higgs boson decays

    Get PDF
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top-quark (stop) and the Higgs boson (higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7 inverse femtobarns of proton-proton collision data at sqrt(s) = 8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the stop mass below 360 to 410 GeV, depending on the higgsino mass

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Measurements of the pp → ZZ production cross section and the Z → 4ℓ branching fraction, and constraints on anomalous triple gauge couplings at √s = 13 TeV

    Get PDF
    Four-lepton production in proton-proton collisions, pp -> (Z/gamma*)(Z/gamma*) -> 4l, where l = e or mu, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb(-1). The ZZ production cross section, sigma(pp -> ZZ) = 17.2 +/- 0.5 (stat) +/- 0.7 (syst) +/- 0.4 (theo) +/- 0.4 (lumi) pb, measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 4l) = 4.83(-0.22)(+0.23) (stat)(-0.29)(+0.32) (syst) +/- 0.08 (theo) +/- 0.12(lumi) x 10(-6) for events with a four-lepton invariant mass in the range 80 4GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ. couplings at 95% confidence level: -0.0012 < f(4)(Z) < 0.0010, -0.0010 < f(5)(Z) < 0.0013, -0.0012 < f(4)(gamma) < 0.0013, -0.0012 < f(5)(gamma) < 0.0013

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe
    • 

    corecore