119 research outputs found

    Impedance measurements and simulations on the TCT and TDI LHC collimators

    Get PDF
    The LHC collimation system is a critical element for the safe operation of the LHC machine and it is subject to continuous performance monitoring, hardware upgrade and optimization. In this work we will address the impact on impedance of the upgrades performed on the injection protection target dump (TDI), where the absorber material has been changed to mitigate the device heating observed in machine operation, and on selected secondary (TCS) and tertiary (TCT) collimators, where beam position monitors (BPM) have been embedded for faster jaw alignment. Con- cerning the TDI, we will present the RF measurements per- formed before and after the upgrade, comparing the result to heating and tune shift beam measurements. For the TCTs, we will study how the higher order modes (HOM) intro- duced by the BPM addition have been cured by means of ferrite placement in the device. The impedance mitigation campaign has been supported by RF measurements whose results are in good agreement with GdfidL and CST simula- tions. The presence of undamped low frequency modes is proved not to be detrimental to the safe LHC operation

    Design of a high power production target for the Beam Dump Facility at CERN

    Full text link
    The Beam Dump Facility (BDF) project is a proposed general-purpose facility at CERN, dedicated to beam dump and fixed target experiments. In its initial phase, the facility is foreseen to be exploited by the Search for Hidden Particles (SHiP) experiment. Physics requirements call for a pulsed 400 GeV/c proton beam as well as the highest possible number of protons on target (POT) each year of operation, in order to search for feebly interacting particles. The target/dump assembly lies at the heart of the facility, with the aim of safely absorbing the full high intensity Super Proton Synchrotron (SPS) beam, while maximizing the production of charmed and beauty mesons. High-Z materials are required for the target/dump, in order to have the shortest possible absorber and reduce muon background for the downstream experiment. The high average power deposited on target (305 kW) creates a challenge for heat removal. During the BDF facility Comprehensive Design Study (CDS), launched by CERN in 2016, extensive studies have been carried out in order to define and assess the target assembly design. These studies are described in the present contribution, which details the proposed design of the BDF production target, as well as the material selection process and the optimization of the target configuration and beam dilution. One of the specific challenges and novelty of this work is the need to consider new target materials, such as a molybdenum alloy (TZM) as core absorbing material and Ta2.5W as cladding. Thermo-structural and fluid dynamics calculations have been performed to evaluate the reliability of the target and its cooling system under beam operation. In the framework of the target comprehensive design, a preliminary mechanical design of the full target assembly has also been carried out, assessing the feasibility of the whole target system.Comment: 17 pages, 18 figure

    FIB-SEM investigation and uniaxial compression of flexible graphite

    Get PDF
    Flexible graphite (FG) with ρ = 1 g/cm3 density is a type of highly porous and anisotropic graphite, mainly used for gaskets and sealing applications, but also suitable for energy absorption, such as in the beam dumping devices of the Large Hadron Collider (see Heredia 2021 [1]). Knowledge of its microstructure and mechanical properties needs to be developed for the selection of an adequate material model able accurately predict stresses and failure in FG components. Here, the FG microstructure properties available in literature are reviewed, followed by Focused Ion Beam - Scanning Electron Microscopy investigation and compression tests. Specifically, a single 100 ÎŒm × 150 ÎŒm cross section was obtained, and the 2D pore sizes and shapes were quantified using image segmentation. Monotonic and cyclic out-of-plane compression tests were performed in single and stacked configuration. Stress-strain curves showed three domains: the initial toe, the transition and the densification domain. The cyclic tangent modulus was also calculated from the cyclic tests. Many observations suggested that FG behaves similarly to crushable foams, crumpled materials and compacted powders, and that both crystalline microstructure and crumpled mesostructure play a predominant role in the deformation mechanism.publishedVersio

    A facility to Search for Hidden Particles (SHiP) at the CERN SPS

    Get PDF
    A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below O{\cal O}(10)~GeV/c2^2, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa

    Design and early operation of a new-generation internal beam dump for CERN's Super Proton Synchrotron

    Full text link
    The Super Proton Synchrotron (SPS) is the last stage in the injector chain for CERN's Large Hadron Collider, and it also provides proton and ion beams for several fixed-target experiments. The SPS has been in operation since 1976, and it has been upgraded over the years. For the SPS to operate safely, its internal beam dump must be able to repeatedly absorb the energy of the circulating beams without sustaining damage that would affect its function. The latest upgrades of the SPS led to the requirement for its beam dump to absorb proton beams with a momentum spectrum from 14 to 450~GeV/cc and an average beam power up to ∌\sim270~kW. This paper presents the technical details of a new design of SPS beam dump that was installed in one of the long straight sections of the SPS during the 2019--2020 shutdown of CERN's accelerator complex. This new beam dump has been in operation since May 2021, and it is foreseen that it will operate with a lifetime of 20~years. The key challenges in the design of the beam dump were linked to the high levels of thermal energy to be dissipated -- to avoid overheating and damage to the beam dump itself -- and high induced levels of radiation, which have implications for personnel access to monitor the beam dump and repair any problems occurring during operation. The design process therefore included extensive thermomechanical finite-element simulations of the beam-dump core and its cooling system's response to normal operation and worst-case scenarios for beam dumping. To ensure high thermal conductivity between the beam-dump core and its water-cooling system, hot isostatic pressing techniques were used in its manufacturing process. A comprehensive set of instrumentation was installed in the beam dump to monitor it during operation and to cross-check the numerical models with operational feedback.Comment: 20 pages, 36 figures, submitted to Phys. Rev. Accel. Beam

    A facility to Search for Hidden Particles (SHiP) at the CERN SPS

    Get PDF
    A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below O{\cal O}(10)~GeV/c2^2, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation

    Measurement of associated charm production induced by 400 GeV/c protons

    Get PDF
    An important input for the interpretation of the measurements of the SHiP ex- periment is a good knowledge of the differential charm production cross section, including cascade production. This is a proposal to measure the associated charm production cross section, employing the SPS 400 GeV/c proton beam and a replica of the first two interaction lengths of the SHiP target. The detection of the produc- tion and decay of charmed hadron in the target will be performed through nuclear emulsion films, employed in an Emulsion Cloud Chamber target structure. In order to measure charge and momentum of decay daughters, we intend to build a mag- netic spectrometer using silicon pixel, scintillating fibre and drift tube detectors. A muon tagger will be built using RPCs. An optimization run is scheduled in 2018, while the full measurement will be performed after the second LHC Long Shutdown

    The SHiP experiment at the proposed CERN SPS Beam Dump Facility

    Get PDF
    The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50 m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400 GeV protons, the experiment aims at profiting from the 4 x 10(19) protons per year that are currently unexploited at the SPS, over a period of 5-10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c(2) up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end
    • 

    corecore