9,903 research outputs found

    Approximating electronically excited states with equation-of-motion linear coupled-cluster theory

    Full text link
    A new perturbative approach to canonical equation-of-motion coupled-cluster theory is presented using coupled-cluster perturbation theory. A second-order M{\o}ller-Plesset partitioning of the Hamiltonian is used to obtain the well known equation-of-motion many-body perturbation theory (EOM-MBPT(2)) equations and two new equation-of-motion methods based on the linear coupled-cluster doubles (EOM-LCCD) and linear coupled-cluster singles and doubles (EOM-LCCSD) wavefunctions. This is achieved by performing a short-circuiting procedure on the MBPT(2) similarity transformed Hamiltonian. These new methods are benchmarked against very accurate theoretical and experimental spectra from 25 small organic molecules. It is found that the proposed methods have excellent agreement with canonical EOM-CCSD state for state orderings and relative excited state energies as well as acceptable quantitative agreement for absolute excitation energies compared with the best estimate theory and experimental spectra.Comment: 9 pages 3 figure

    Optimal design of an aeroelastic wing structure with seamless control surfaces

    Get PDF
    This article presents an investigation into the concept and optimal design of a lightweight seamless aeroelastic wing (SAW) structure for small air vehicles. Attention has been first focused on the design of a hingeless flexible trailing edge (TE) control surface. Two innovative design features have been created in the SAW TE section: an open sliding TE and a curved beam and disc actuation mechanism. This type of actuated TE section allows for the SAW having a camber change in a desirable shape and minimum control power demand. This design concept has been simulated numerically and demonstrated by a test model. For a small air vehicle of large sweep back wing, it is noted that significant structural weight saving can be achieved. However, further weight saving is mainly restricted by the aeroelastic stability and minimum number of carbon/epoxy plies in a symmetric layup rather than the structural strength. Therefore, subsequent effort was made to optimize the primary wing box structure. The results show that an initial structural weight can be reduced significantly under the strength criterion. The resulting reduction of the wing box stiffness and aeroelastic stability and control effectiveness can be improved by applying the aeroelastic tailoring. Because of the large swept angle and resulting lightweight and highly flexible SAW, geometrical non-linearity and large bending-torsion aeroelastic coupling have been considered in the analysis

    PSR J0737-3039B: A probe of radio pulsar emission heights

    Get PDF
    In the double pulsar system PSR J0737-3039A/B the strong wind produced by pulsar A distorts the magnetosphere of pulsar B. The influence of these distortions on the orbital-dependent emission properties of pulsar B can be used to determine the location of the coherent radio emission generation region in the pulsar magnetosphere. Using a model of the wind-distorted magnetosphere of pulsar B and the well defined geometrical parameters of the system, we determine the minimum emission height to be ~ 20 neutron star radii in the two bright orbital longitude regions. We can determine the maximum emission height by accounting for the amount of deflection of the polar field line with respect to the magnetic axis using the analytical magnetic reconnection model of Dungey and the semi-empirical numerical model of Tsyganenko. Both of these models estimate the maximum emission height to be ~ 2500 neutron star radii. The minimum and maximum emission heights we calculate are consistent with those estimated for normal isolated pulsars.Comment: 29 pages, 14 figures, Accepted by ApJ on 3 March 201

    Single side damage simulations and detection in beam-like structures

    Get PDF
    Beam-like structures are the most common components in real engineering, while single side damage is often encountered. In this study, a numerical analysis of single side damage in a free-free beam is analysed with three different finite element models; namely solid, shell and beam models for demonstrating their performance in simulating real structures. Similar to experiment, damage is introduced into one side of the beam, and natural frequencies are extracted from the simulations and compared with experimental and analytical results. Mode shapes are also analysed with modal assurance criterion. The results from simulations reveal a good performance of the three models in extracting natural frequencies, and solid model performs better than shell while shell model performs better than beam model under intact state. For damaged states, the natural frequencies captured from solid model show more sensitivity to damage severity than shell model and shell model performs similar to the beam model in distinguishing damage. The main contribution of this paper is to perform a comparison between three finite element models and experimental data as well as analytical solutions. The finite element results show a relatively well performanc

    Identifying the impact of tidal level variation on river basin flooding

    Get PDF
    Different parts of Sri Lanka are regularly subjected to a wide range of natural disasters, of which floods are most common. When severe, flooding can decrease the economic and social development of the country and the Government of Sri Lanka has to spend huge amounts of money each year to address such problems. Floods occur mostly because of heavy rainfall combined with human-induced factors in the catchment areas. In this project, tidal level variation is considered as a factor for floods in the river basins. The tidal level changes periodically due to the gravitational attraction from the sun and the moon and the centrifugal force of the earth’s rotation. This project studied the relationship between changes in tide and river water level in the mouth of the Kelani River. Tidal data was collected from the Colombo Harbor, and water level data and river flow data was obtained from the Nagalagam Street gauge and Hanwella gauge. It was found that there is a direct relationship between tidal level and flood level in the river mouth area. Therefore, it is proposed that tidal level variations be considered in order to make accurate flood predictions in the river mouth areas.Length: pp.119-126River basinsFlooding

    Pattern formation in binary fluid mixtures induced by short-range competing interactions

    Get PDF
    Molecular dynamics simulations and integral equation calculations of a simple equimolar mixture of diatomic molecules and monomers interacting via attractive and repulsive short-range potentials show the existence of pattern formation (microheterogeneity), mostly due to depletion forces away from the demixing region. Effective site-site potentials extracted from the pair correlation functions using an inverse Monte Carlo approach and an integral equation inversion procedure exhibit the features characteristic of a short-range attractive and long-range repulsive potential. When charges are incorporated into the model, this becomes a coarse grained representation of a room temperature ionic liquid, and as expected, intermediate range order becomes more pronounced and stable

    Theory of transient spectroscopy of multiple quantum well structures

    Full text link
    A theory of the transient spectroscopy of quantum well (QW) structures under a large applied bias is presented. An analytical model of the initial part of the transient current is proposed. The time constant of the transient current depends not only on the emission rate from the QWs, as is usually assumed, but also on the subsequent carrier transport across QWs. Numerical simulation was used to confirm the validity of the proposed model, and to study the transient current on a larger time scale. It is shown that the transient current is influenced by the nonuniform distribution of the electric field and related effects, which results in a step-like behavior of the current. A procedure of extraction of the QW emission time from the transient spectroscopy experiments is suggested.Comment: 5 pages, 4 figures, to be published in J. Appl. Phy

    Towards a global model of accounting education

    Full text link
    Purpose - The purpose of this paper is to examine the accounting education systems in three countries - Australia, Japan and Sri Lanka - to inform the development and testing (by application) of a Global Model of Accounting Education

    Fabricating New Miniaturized Biosensors for the Detection of Dna Damage and Dna Mismatches

    Get PDF
    A large number of genetic diseases and genetic disorders are simply caused by base alterations in the genome. Therefore, developing efficient and cost effective techniques for routine detection of these alterations is of great importance. Different methods involving gel electrophoresis and Polymerase Chain Reaction have been widely employed, but majority of these methods are costly, time consuming, and lack throughput, creating a fundamental gap between the current state-of-the-art and desired characteristics of low-cost, high-speed, simplicity, versatility, and potential for miniaturization. In this study, we attempt to bridge this gap by developing new sensing platforms to detect DNA base mismatches and DNA damage with higher throughput, better ease-of-use, and with the potential to be miniaturized for greater portability. Two electrochemical mismatch detection sensing platforms were developed. One uses the electrochemical reduction of trans-4-cinnamic acid diazonium tetrafluoroborate. The other takes advantage of the natural ability of MutS protein for single base mismatch recognition. Also, two DNA damage detection assays were developed and the first approach uses Atomic Force Microscopy to monitor minor DNA damage by labeling damaged sites with a biomarker. This site-specific biolabeling was achieved through well-established biotin-streptavidin chemistry. In the second approach, a new layer-by-layer biomolecular immobilization method was introduced and used to detect DNA chemical damage using electrochemical technique
    corecore