213 research outputs found
Rentable Internet of Things Infrastructure for Sensing as a Service (S2aaS)
Sensing as a Service (S2aaS) model [1] [2] is inspired by the traditional
Everything as a service (XaaS) approaches [3]. It aims to better utilize the
existing Internet of Things (IoT) infrastructure. S2aaS vision aims to create
'rentable infrastructure' where interested parties can gather IoT data by
paying a fee for the infrastructure owners
Improve the Sustainability of Internet of Things Through Trading-based Value Creation
Internet of Things (IoT) has been widely discussed over the past few years in
technology point of view. However, the social aspects of IoT are seldom studied
to date. In this paper, we discuss the IoT in social point of view.
Specifically, we examine the strategies to increase the adoption of IoT in a
sustainable manner. Such discussion is essential in today's context where
adoption of IoT solutions by non-technical community is slow. Specially, large
number of IoT solutions making their way into the market every day. We propose
an trading-based value creation model based on sensing as a service paradigm in
order to fuel the adoption of IoT. We discuss the value creation and its impact
towards the society especially to households and their occupants. We also
present results of two different surveys we conducted in order to examine the
potential acceptance of the proposed model among the general public.Comment: arXiv admin note: substantial text overlap with arXiv:1307.819
Sensing as a service (S2aaS): buying and selling IoT data
The Internet of Things (IoT) envisions the creation of an environment where everyday objects (e.g. microwaves, fridges, cars, coffee machines, etc.) are connected to the internet and make users' lives more convenient. It will also lead users to consume resources more efficiently
End-to-End Privacy for Open Big Data Markets
The idea of an open data market envisions the creation of a data trading
model to facilitate exchange of data between different parties in the Internet
of Things (IoT) domain. The data collected by IoT products and solutions are
expected to be traded in these markets. Data owners will collect data using IoT
products and solutions. Data consumers who are interested will negotiate with
the data owners to get access to such data. Data captured by IoT products will
allow data consumers to further understand the preferences and behaviours of
data owners and to generate additional business value using different
techniques ranging from waste reduction to personalized service offerings. In
open data markets, data consumers will be able to give back part of the
additional value generated to the data owners. However, privacy becomes a
significant issue when data that can be used to derive extremely personal
information is being traded. This paper discusses why privacy matters in the
IoT domain in general and especially in open data markets and surveys existing
privacy-preserving strategies and design techniques that can be used to
facilitate end to end privacy for open data markets. We also highlight some of
the major research challenges that need to be address in order to make the
vision of open data markets a reality through ensuring the privacy of
stakeholders.Comment: Accepted to be published in IEEE Cloud Computing Magazine: Special
Issue Cloud Computing and the La
The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey
The Internet of Things (IoT) is a dynamic global information network
consisting of internet-connected objects, such as Radio-frequency
identification (RFIDs), sensors, actuators, as well as other instruments and
smart appliances that are becoming an integral component of the future
internet. Over the last decade, we have seen a large number of the IoT
solutions developed by start-ups, small and medium enterprises, large
corporations, academic research institutes (such as universities), and private
and public research organisations making their way into the market. In this
paper, we survey over one hundred IoT smart solutions in the marketplace and
examine them closely in order to identify the technologies used,
functionalities, and applications. More importantly, we identify the trends,
opportunities and open challenges in the industry-based the IoT solutions.
Based on the application domain, we classify and discuss these solutions under
five different categories: smart wearable, smart home, smart, city, smart
environment, and smart enterprise. This survey is intended to serve as a
guideline and conceptual framework for future research in the IoT and to
motivate and inspire further developments. It also provides a systematic
exploration of existing research and suggests a number of potentially
significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201
A Hybrid Approach for Data Analytics for Internet of Things
The vision of the Internet of Things is to allow currently unconnected
physical objects to be connected to the internet. There will be an extremely
large number of internet connected devices that will be much more than the
number of human being in the world all producing data. These data will be
collected and delivered to the cloud for processing, especially with a view of
finding meaningful information to then take action. However, ideally the data
needs to be analysed locally to increase privacy, give quick responses to
people and to reduce use of network and storage resources. To tackle these
problems, distributed data analytics can be proposed to collect and analyse the
data either in the edge or fog devices. In this paper, we explore a hybrid
approach which means that both innetwork level and cloud level processing
should work together to build effective IoT data analytics in order to overcome
their respective weaknesses and use their specific strengths. Specifically, we
collected raw data locally and extracted features by applying data fusion
techniques on the data on resource constrained devices to reduce the data and
then send the extracted features to the cloud for processing. We evaluated the
accuracy and data consumption over network and thus show that it is feasible to
increase privacy and maintain accuracy while reducing data communication
demands.Comment: Accepted to be published in the Proceedings of the 7th ACM
International Conference on the Internet of Things (IoT 2017
- …