105 research outputs found

    The Transcription Factor Bhlhb4 Is Required for Rod Bipolar Cell Maturation

    Get PDF
    AbstractRetinal bipolar cells are essential to the transmission of light information. Although bipolar cell dysfunction can result in blindness, little is known about the factors required for bipolar cell development and functional maturation. The basic helix-loop-helix (bHLH) transcription factor Bhlhb4 was found to be expressed in rod bipolar cells (RB). Electroretinograms (ERGs) in the adult Bhlhb4 knockout (Bhlhb4−/−) showed that the loss of Bhlhb4 resulted in disrupted rod signaling and profound retinal dysfunction resembling human congenital stationary night blindness (CSNB), characterized by the loss of the scotopic ERG b-wave. A depletion of inner nuclear layer (INL) cells in the adult Bhlhb4 knockout has been ascribed to the abolishment of the RB cell population during postnatal development. Other retinal cell populations including photoreceptors were unaltered. The timing of RB cell depletion in the Bhlhb4−/− mouse suggests that Bhlhb4 is essential for RB cell maturation

    Sodium Trends in Selected U.S. Total Diet Study Foods, 2003-2011

    Get PDF
    AbstractObjectiveCharacterize trends in sodium concentrations in the general categories of foods analyzed in the U.S. FDA Total Diet Study (TDS) program from 2003 through 2011. Methods: Trends were assessed for sodium concentrations in a small convenience sample of TDS foods from 2003 to 2011 using simple linear regression with the SAS regression procedure, focusing on sodium concentrations in foods in USDA's sentinel food categories. Results: Levels of sodium in various TDS foods varied over time. Overall, 75 TDS foods did not have statistically significant linear changes in sodium content during that time, and 23 TDS foods did. Certain sentinel foods such as ramen-style noodles showed gradually increasing sodium content from 2003 through 2011. Significance: Over three quarters of foods show no statistically significant linear changes over time. Although a number of selected foods had a statistically significant decline, a limitation to this study is that specific brands of TDS foods were not necessarily the same for each period. The results suggest that some sodium reduction has been occurring in some foods and supports the idea that commercially viable reductions are possible. Such reductions in the sodium content of foods could have large public health implications—rates of hypertension and related health consequences would likely decline—thus saving thousands of lives and billions of dollars each year

    Assessing Photoreceptor Structure Associated with Ellipsoid Zone Disruptions Visualized with Optical Coherence Tomography

    Get PDF
    Purpose: To compare images of photoreceptor layer disruptions obtained with optical coherence tomography (OCT) and adaptive optics scanning light ophthalmoscopy (AOSLO) in a variety of pathologic states.Methods: Five subjects with photoreceptor ellipsoid zone disruption as per OCT and clinical diagnoses of closed-globe blunt ocular trauma (n = 2), macular telangiectasia type 2 (n = 1), blue-cone monochromacy (n = 1), or cone-rod dystrophy (n = 1) were included. Images were acquired within and around photoreceptor lesions using spectral domain OCT, confocal AOSLO, and split-detector AOSLO.Results: There were substantial differences in the extent and appearance of the photoreceptor mosaic as revealed by confocal AOSLO, split-detector AOSLO, and spectral domain OCT en face view of the ellipsoid zone.Conclusion: Clinically available spectral domain OCT, viewed en face or as B-scan, may lead to misinterpretation of photoreceptor anatomy in a variety of diseases and injuries. This was demonstrated using split-detector AOSLO to reveal substantial populations of photoreceptors in areas of no, low, or ambiguous ellipsoid zone reflectivity with en face OCT and confocal AOSLO. Although it is unclear if these photoreceptors are functional, their presence offers hope for therapeutic strategies aimed at preserving or restoring photoreceptor function

    Overcoming the Challenges to Clinical Development of X-Linked Retinitis Pigmentosa Therapies: Proceedings of an Expert Panel

    Get PDF
    UNLABELLED: X-linked retinitis pigmentosa (XLRP) is a rare inherited retinal disease manifesting as impaired night vision and peripheral vision loss that progresses to legal blindness. Although several trials of ocular gene therapy for XLRP have been conducted or are in progress, there is currently no approved treatment. In July 2022, the Foundation Fighting Blindness convened an expert panel to examine relevant research and make recommendations for overcoming the challenges and capitalizing on the opportunities in conducting clinical trials of RPGR-targeted therapy for XLRP. Data presented concerned RPGR structure and mutation types known to cause XLRP, RPGR mutation-associated retinal phenotype diversity, patterns in genotype/phenotype relationships, disease onset and progression from natural history studies, and the various functional and structural tests used to monitor disease progression. Panel recommendations include considerations, such as genetic screening and other factors that can impact clinical trial inclusion criteria, the influence of age on defining and stratifying participant cohorts, the importance of conducting natural history studies early in clinical development programs, and the merits and drawbacks of available tests for measuring treatment outcomes. We recognize the need to work with regulators to adopt clinically meaningful end points that would best determine the efficacy of a trial. Given the promise of RPGR-targeted gene therapy for XLRP and the difficulties encountered in phase III clinical trials to date, we hope these recommendations will help speed progress to finding a cure. TRANSLATIONAL RELEVANCE: Examination of relevant data and recommendations for the successful clinical development of gene therapies for RPGR-associated XLRP

    The Reliability of Parafoveal Cone Density Measurements

    Get PDF
    Background Adaptive optics scanning light ophthalmoscopy (AOSLO) enables direct visualisation of the cone mosaic, with metrics such as cone density and cell spacing used to assess the integrity or health of the mosaic. Here we examined the interobserver and inter-instrument reliability of cone density measurements. Methods For the interobserver reliability study, 30 subjects with no vision-limiting pathology were imaged. Three image sequences were acquired at a single parafoveal location and aligned to ensure that the three images were from the same retinal location. Ten observers used a semiautomated algorithm to identify the cones in each image, and this was repeated three times for each image. To assess inter-instrument reliability, 20 subjects were imaged at eight parafoveal locations on one AOSLO, followed by the same set of locations on the second AOSLO. A single observer manually aligned the pairs of images and used the semiautomated algorithm to identify the cones in each image. Results Based on a factorial study design model and a variance components model, the interobserver study\u27s largest contribution to variability was the subject (95.72%) while the observer\u27s contribution was only 1.03%. For the inter-instrument study, an average cone density intraclass correlation coefficient (ICC) of between 0.931 and 0.975 was calculated. Conclusions With the AOSLOs used here, reliable cone density measurements can be obtained between observers and between instruments. Additional work is needed to determine how these results vary with differences in image quality

    Foveal Cone Structure in Patients With Blue Cone Monochromacy

    Get PDF
    Purpose: Blue cone monochromacy (BCM) is a rare inherited cone disorder in which both long- (L-) and middle- (M-) wavelength sensitive cone classes are either impaired or nonfunctional. Assessing genotype-phenotype relationships in BCM can improve our understanding of retinal development in the absence of functional L- and M-cones. Here we examined foveal cone structure in patients with genetically-confirmed BCM, using adaptive optics scanning light ophthalmoscopy (AOSLO). / Methods: Twenty-three male patients (aged 6-75 years) with genetically-confirmed BCM were recruited for high-resolution imaging. Eight patients had a deletion of the locus control region (LCR), and 15 had a missense mutation-Cys203Arg-affecting the first two genes in the opsin gene array. Foveal cone structure was assessed using confocal and non-confocal split-detection AOSLO across a 300 × 300 µm area, centered on the location of peak cell density. / Results: Only one of eight patients with LCR deletions and 10 of 15 patients with Cys203Arg mutations had analyzable images. Mean total cone density for Cys203Arg patients was 16,664 ± 11,513 cones/mm2 (n = 10), which is, on average, around 40% of normal. Waveguiding cone density was 2073 ± 963 cones/mm2 (n = 9), which was consistent with published histological estimates of S-cone density in the normal eye. The one patient with an LCR deletion had a total cone density of 10,246 cones/mm2 and waveguiding density of 1535 cones/mm2. / Conclusions: Our results show that BCM patients with LCR deletions and Cys203Arg mutations have a population of non-waveguiding photoreceptors, although the spectral identity and level of function remain unknown
    • …
    corecore