14,524 research outputs found

    Coupling a single NV center with a superconducting qubit via the electro-optic effect

    Full text link
    We propose an efficient scheme for transferring quantum states and generating entangled states between two qubits of different nature. The hybrid system consists a single nitrogen vacancy (NV) center and a superconducting (SC) qubit, which couple to an optical cavity and a microwave resonator, respectively. Meanwhile, the optical cavity and the microwave resonator are coupled via the electro-optic effect. By adjusting the relative parameters, we can achieve high fidelity quantum state transfer as well as highly entangled states between the NV center and the SC qubit. This protocol is within the reach of currently available techniques, and may provide interesting applications in quantum communication and computation with single NV centers and SC qubits.Comment: 7 pages, 5 figure

    Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system

    Full text link
    We propose an efficient scheme for simulating the Lipkin-Meshkov-Glick (LMG) model with nitrogen-vacancy (NV) center ensembles in diamond magnetically coupled to superconducting coplanar waveguide cavities. With the assistance of external microwave driving fields, we show that the interaction of the NV spins can be easily controlled, and several types of the LMG model can be realized by tuning the different parameters. Under the thermal dynamical limit, the distinct non-equilibrium second order quantum phase transition of the spin ensemble can be achieved at the critical point. Furthermore, we show that the spin squeezed state can be generated by tailoring the LMG Hamiltonian to possess the two-axis counter-twisting form in this hybrid quantum system.Comment: 10 pages, 4 figures, Accepted for publication in PR

    Robust continuous-variable entanglement of microwave photons with cavity electromechanics

    Full text link
    We investigate the controllable generation of robust photon entanglement with a circuit cavity electromechanical system, consisting of two superconducting coplanar waveguide cavities (CPWC's) capacitively coupled by a nanoscale mechanical resonator (MR). We show that, with this electromechanical system, two-mode continuous-variable entanglement of cavity photons can be engineered deterministically either via coherent control on the dynamics of the system, or through a dissipative quantum dynamical process. The first scheme, operating in the strong coupling regime, explores the excitation of the cavity Bogoliubov modes, and is insensitive to the initial thermal noise. The second one is based on the reservoir-engineering approach, which exploits the mechanical dissipation as a useful resource to perform ground state cooling of two delocalized cavity Bogoliubov modes. The achieved amount of entanglement in both schemes is determined by the relative ratio of the effective electromechanical coupling strengths, which thus can be tuned and made much lager than that in previous studies.Comment: To appear in PRA, published versio

    Miniature High-Sensitivity High-Temperature Fiber Sensor with a Dispersion Compensation Fiber-Based Interferometer

    Get PDF
    A miniature high-sensitivity, high-temperature fiber sensor with an interferometer based on a bare small-core-diameter dispersion compensation fiber (DCF) is reported. The sensing head is a single-mode-fiber (SMF) DCF configuration formed by a 4 mm long bare DCF with one end connected to the SMF by a fusion splicing technique and the other end cleaved. Due to the large mode index difference and high thermo-optic coefficient induced by two dominative interference modes, a miniature high-temperature fiber sensor with a high sensitivity of 68.6 pm/°C is obtained by monitoring the wavelength shift of the interference spectrum. This type of sensor has the features of small size, high sensitivity, high stability, simple structure, and low cost
    • …
    corecore