95 research outputs found

    On Efficient Training, Controllability and Compositional Generalization of Insertion-based Language Generators

    Full text link
    Auto-regressive language models with the left-to-right generation order have been a predominant paradigm for language generation. Recently, out-of-order text generation beyond the traditional left-to-right paradigm has attracted extensive attention, with a notable variation of insertion-based generation, where a model is used to gradually extend the context into a complete sentence purely with insertion operations. However, since insertion operations disturb the position information of each token, it is often believed that each step of the insertion-based likelihood estimation requires a bi-directional \textit{re-encoding} of the whole generated sequence. This computational overhead prohibits the model from scaling up to generate long, diverse texts such as stories, news articles, and reports. To address this issue, we propose InsNet, an insertion-based sequence model that can be trained as efficiently as traditional transformer decoders while maintaining the same performance as that with a bi-directional context encoder. We evaluate InsNet on story generation and CleVR-CoGENT captioning, showing the advantages of InsNet in several dimensions, including computational costs, generation quality, the ability to perfectly incorporate lexical controls, and better compositional generalization

    Debiasing Community Detection: The Importance of Lowly-Connected Nodes

    Get PDF
    Community detection is an important task in social network analysis, allowing us to identify and understand the communities within the social structures. However, many community detection approaches either fail to assign low degree (or lowly-connected) users to communities, or assign them to trivially small communities that prevent them from being included in analysis. In this work, we investigate how excluding these users can bias analysis results. We then introduce an approach that is more inclusive for lowly-connected users by incorporating them into larger groups. Experiments show that our approach outperforms the existing state-of-the-art in terms of F1 and Jaccard similarity scores while reducing the bias towards low-degree users

    Men Are Elected, Women Are Married: Events Gender Bias on Wikipedia

    Full text link
    Human activities can be seen as sequences of events, which are crucial to understanding societies. Disproportional event distribution for different demographic groups can manifest and amplify social stereotypes, and potentially jeopardize the ability of members in some groups to pursue certain goals. In this paper, we present the first event-centric study of gender biases in a Wikipedia corpus. To facilitate the study, we curate a corpus of career and personal life descriptions with demographic information consisting of 7,854 fragments from 10,412 celebrities. Then we detect events with a state-of-the-art event detection model, calibrate the results using strategically generated templates, and extract events that have asymmetric associations with genders. Our study discovers that the Wikipedia pages tend to intermingle personal life events with professional events for females but not for males, which calls for the awareness of the Wikipedia community to formalize guidelines and train the editors to mind the implicit biases that contributors carry. Our work also lays the foundation for future works on quantifying and discovering event biases at the corpus level.Comment: ACL 202
    • …
    corecore