5 research outputs found

    Strong, Conductive, Lightweight, Neat Graphene Aerogel Fibers with Aligned Pores

    No full text
    Liquid crystals of anisotropic colloids are of great significance in the preparation of their ordered macroscopic materials, for example, in the cases of carbon nanotubes and graphene. Here, we report a facile and scalable spinning process to prepare neat “core–shell” structured graphene aerogel fibers and three-dimensional cylinders with aligned pores from the flowing liquid crystalline graphene oxide (GO) gels. The uniform alignment of graphene sheets, inheriting the lamellar orders from GO liquid crystals, offers the porous fibers high specific tensile strength (188 kN m kg<sup>–1</sup>) and the porous cylinders high compression modulus (3.3 MPa). The porous graphene fibers have high specific surface area up to 884 m<sup>2</sup> g<sup>–1</sup> due to their interconnected pores and exhibit fine electrical conductivity (2.6 × 10<sup>3</sup> to 4.9 × 10<sup>3</sup> S m<sup>–1</sup>) in the wide temperature range of 5–300 K. The decreasing conductivity with decreasing temperature illustrates a typical semiconducting behavior, and the 3D interconnected network of 2D graphene sheets determines a dual 2D and 3D hopping conduction mechanism. The strong mechanical strength, high porosity, and fine electrical conductivity enable this novel material of ordered graphene aerogels to be greatly useful in versatile catalysts, supercapacitors, flexible batteries and cells, lightweight conductive fibers, and functional textiles

    Ultrasensitive, Superhigh Signal-to-Noise Ratio, Self-Powered Solar-Blind Photodetector Based on <i>n</i>‑Ga<sub>2</sub>O<sub>3</sub>/<i>p</i>‑CuSCN Core–Shell Microwire Heterojunction

    No full text
    Solar-blind photodetectors have captured intense attention due to their high significance in ultraviolet astronomy and biological detection. However, most of the solar-blind photodetectors have not shown extraordinary advantages in weak light signal detection because the forewarning of low-dose deep-ultraviolet radiation is so important for the human immune system. In this study, a high-performance solar-blind photodetector is constructed based on the n-Ga2O3/p-CuSCN core–shell microwire heterojunction by a simple immersion method. In comparison with the single device of the Ga2O3 and CuSCN, the heterojunction photodetector demonstrates an enhanced photoelectric performance with an ultralow dark current of 1.03 pA, high photo-to-dark current ratio of 4.14 × 104, and high rejection ratio (R254/R365) of 1.15 × 104 under a bias of 5 V. Excitingly, the heterostructure photodetector shows high sensitivity to the weak signal (1.5 μW/cm2) of deep ultraviolet and high-resolution detection to the subtle change of signal intensity (1.0 μW/cm2). Under the illumination with 254 nm light at 5 V, the photodetector shows a large responsivity of 13.3 mA/W, superb detectivity of 9.43 × 1011 Jones, and fast response speed with a rise time of 62 ms and decay time of 35 ms. Additionally, the photodetector can work without an external power supply and has specific solar-blind spectrum selectivity as well as excellent stability even through 1 month of storage. Such prominent photodetection, profited by the novel geometric construction and the built-in electric field originating from the p–n heterojunction, meets greatly well the “5S” requirements of the photodetector for practical application

    Long-Term Safety of Adalimumab in 29,967 Adult Patients from Global Clinical Trials Across Multiple Indications: An Updated Analysis

    No full text
    Provide enhanced digital features for this article If you are an author of this publication and would like to provide additional enhanced digital features for your article then please contact [email protected]. The journal offers a range of additional features designed to increase visibility and readership. All features will be thoroughly peer reviewed to ensure the content is of the highest scientific standard and all features are marked as ‘peer reviewed’ to ensure readers are aware that the content has been reviewed to the same level as the articles they are being presented alongside. Moreover, all sponsorship and disclosure information is included to provide complete transparency and adherence to good publication practices. This ensures that however the content is reached the reader has a full understanding of its origin. No fees are charged for hosting additional open access content. Other enhanced features include, but are not limited to: • Slide decks • Videos and animations • Audio abstracts • Audio slides</p

    A Spiro-MeOTAD/Ga<sub>2</sub>O<sub>3</sub>/Si p‑i‑n Junction Featuring Enhanced Self-Powered Solar-Blind Sensing via Balancing Absorption of Photons and Separation of Photogenerated Carriers

    No full text
    Solar blind ultraviolet (SBUV) self-powered photodetectors (PDs) have a great number of applications in civil and military exploration. Ga2O3 is a prospective candidate for SBUV detection owing to its reasonable bandgap corresponding to the SBUV waveband. Nevertheless, the previously reported Ga2O3 photovoltaic devices had low photoresponse performance and were still far from the demands of practical application. Herein, we propose an idea of using spiro-MeOTAD (spiro) as the SBUV transparent conductive layer to construct p-i-n PDs (p-spiro/Ga2O3/n-Si). With the aid of double built-in electric fields, the designed p-i-n PDs could operate without any external power source. Furtherly, the influence of spiro thickness on improving the photoelectric performance of devices is investigated in detail and the optimum device is achieved, translating to a peak responsivity of 192 mA/W upon a weak 254 nm light illumination of 2 μW/cm2 at zero bias. In addition, the I–t curve of our PD shows binary response characteristics and a four-stage current response behavior under a small forward bias, and also, its underlying working mechanism is analyzed. In sum, this newly developed device presents great potential for booming the high energy-efficient optoelectronic devices in the short run

    Freestanding Crystalline β‑Ga<sub>2</sub>O<sub>3</sub> Flexible Membrane Obtained via Lattice Epitaxy Engineering for High-Performance Optoelectronic Device

    No full text
    Wearable and flexible β-Ga2O3-based semiconductor devices have attracted considerable attention, due to their outstanding performance and potential application in real-time optoelectronic monitoring and sensing. However, the unavailability of high-quality crystalline and flexible β-Ga2O3 membranes limits the fabrication of relevant devices. Here, through lattice epitaxy engineering together with the freestanding method, we demonstrate the preparation of a robust bending-resistant and crystalline β-Ga2O3 (−201) membrane. Based on this, we fabricate a flexible β-Ga2O3 photodetector device that shows comparable performance in photocurrent responsivity and spectral selectivity to conventional rigid β-Ga2O3 film-based devices. Moreover, based on the transferred β-Ga2O3 membrane on a silicon wafer, the PEDOT:PSS/β-Ga2O3 p–n heterojunction device with self-powered characteristic was constructed, further demonstrating its superior heterogeneous integration ability with other functional materials. Our results not only demonstrate the feasibility of obtaining a high-quality crystalline and flexible β-Ga2O3 membrane for an integrated device but also provide a pathway to realize flexible optical and electronic applications for other semiconducting materials
    corecore