315 research outputs found

    Learning from medical data streams: an introduction

    Get PDF
    Clinical practice and research are facing a new challenge created by the rapid growth of health information science and technology, and the complexity and volume of biomedical data. Machine learning from medical data streams is a recent area of research that aims to provide better knowledge extraction and evidence-based clinical decision support in scenarios where data are produced as a continuous flow. This year's edition of AIME, the Conference on Artificial Intelligence in Medicine, enabled the sound discussion of this area of research, mainly by the inclusion of a dedicated workshop. This paper is an introduction to LEMEDS, the Learning from Medical Data Streams workshop, which highlights the contributed papers, the invited talk and expert panel discussion, as well as related papers accepted to the main conference

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    Predicting students drop out : a case study

    Get PDF
    The monitoring and support of university freshmen is considered very important at many educational institutions. In this paper we describe the results of the educational data mining case study aimed at predicting the Electrical Engineering (EE) students drop out after the first semester of their studies or even before they enter the study program as well as identifying success-factors specific to the EE program. Our experimental results show that rather simple and intuitive classifiers (decision trees) give a useful result with accuracies between 75 and 80%. Besides, we demonstrate the usefulness of cost-sensitive learning and thorough analysis of misclassifications, and show a few ways of further prediction improvement without having to collect additional data about the students

    Looking Deeper into Deep Learning Model: Attribution-based Explanations of TextCNN

    Get PDF
    Layer-wise Relevance Propagation (LRP) and saliency maps have been recently used to explain the predictions of Deep Learning models, specifically in the domain of text classification. Given different attribution-based explanations to highlight relevant words for a predicted class label, experiments based on word deleting perturbation is a common evaluation method. This word removal approach, however, disregards any linguistic dependencies that may exist between words or phrases in a sentence, which could semantically guide a classifier to a particular prediction. In this paper, we present a feature-based evaluation framework for comparing the two attribution methods on customer reviews (public data sets) and Customer Due Diligence (CDD) extracted reports (corporate data set). Instead of removing words based on the relevance score, we investigate perturbations based on embedded features removal from intermediate layers of Convolutional Neural Networks. Our experimental study is carried out on embedded-word, embedded-document, and embedded-ngrams explanations. Using the proposed framework, we provide a visualization tool to assist analysts in reasoning toward the model's final prediction.Comment: NIPS 2018 Workshop on Challenges and Opportunities for AI in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy, Montr\'eal, Canad

    Bridging versioning and adaptive hypermedia in the dynamic web

    Get PDF
    Web Dynamics has been recently considered in the context of the analysis of how people search and re-search information on the web. There are lots of challenges and opportunities when considering user behaviour. In this paper we propose the way to tackle some of them by applying versioning methodologies (as a backend solution) in the context of content changes, user re-visitations and re-searches on the web, as well as Adaptive Hypermedia (AH) techniques to overcome visualisation issues (as a frontend solution). Essentially we bridge versioning and AH in the field of Web Dynamics showing how versioning helps to make the adaptation scrutable

    Towards the second order adaptation in the next generation remote patient management systems

    Get PDF
    Remote Patient Management (RPM) systems are expected to be increasingly important for chronic disease management as they facilitate monitoring vital signs of patients at their home, alerting the care givers in case of worsening. They also provide patients with educational content. RPM systems collect a lot of (different types of) data about patients, providing an opportunity for personalizing information services. In our recent work we highlighted the importance of using available information for personalization and presented a possible next generation RPM system that enables personalization of educational content and its delivery to patients. We introduced a generic methodology for personalization and emphasized the role of knowledge discovery (KDD). In this paper we focus on the necessity of the second-order adaptation mechanisms in the RPM systems to address the challenge of continuous on-line (re)learning of actionable patterns from the patient data

    Introduction into Sparks of the Learning Analytics Future

    Get PDF
    This section offers a compilation of 16 extended abstracts summarizing research of the doctoral students who participated in the Second Learning Analytics Summer Institute (LASI 2014) held at Harvard University in July 2014. The abstracts highlight the motivation, main goals and expected contributions to the field from the ongoing learning analytics doctoral research around the globe. These works cover several major topics in learning analytics including novel methods for automated annotations, longitudinal analytic studies, networking analytics, multi-modal analytics, dashboards, and data-driven feedback and personalization. The assumed settings include the traditional classroom, online and mobile learning, blended learning, and massive open online course education models

    A Survey on Concept Drift Adaptation

    Get PDF
    Concept drift primarily refers to an online supervised learning scenario when the relation between the in- put data and the target variable changes over time. Assuming a general knowledge of supervised learning in this paper we characterize adaptive learning process, categorize existing strategies for handling concept drift, discuss the most representative, distinct and popular techniques and algorithms, discuss evaluation methodology of adaptive algorithms, and present a set of illustrative applications. This introduction to the concept drift adaptation presents the state of the art techniques and a collection of benchmarks for re- searchers, industry analysts and practitioners. The survey aims at covering the different facets of concept drift in an integrated way to reflect on the existing scattered state-of-the-art
    corecore