32 research outputs found
A new ocean dataset describing Boundary Current systems states and their variability
A report on the development and implementations of new methods and dataset productions for Boundary Current systems monitorin
First description of in situ chlorophyll fluorescence signal within East Antarctic coastal polynyas during fall and winter
Antarctic coastal polynyas are persistent and recurrent regions of open water located between the coast and the drifting pack-ice. In spring, they are the first polar areas to be exposed to light, leading to the development of phytoplankton blooms, making polynyas potential ecological hotspots in sea-ice regions. Knowledge on polynya oceanography and ecology during winter is limited due to their inaccessibility. This study describes i) the first in situ chlorophyll fluorescence signal (a proxy for chlorophyll-a concentration and thus presence of phytoplankton) in polynyas between the end of summer and winter, ii) assesses whether the signal persists through time and iii) identifies its main oceanographic drivers. The dataset comprises 698 profiles of fluorescence, temperature and salinity recorded by southern elephant seals in 2011, 2019-2021 in the Cape-Darnley (CDP;67˚S-69˚E) and Shackleton (SP;66˚S-95˚E) polynyas between February and September. A significant fluorescence signal was observed until April in both polynyas. An additional signal occurring at 130m depth in August within CDP may result from in situ growth of phytoplankton due to potential adaptation to low irradiance or remnant chlorophyll-a that was advected into the polynya. The decrease and deepening of the fluorescence signal from February to August was accompanied by the deepening of the mixed layer depth and a cooling and salinification of the water column in both polynyas. Using Principal Component Analysis as an exploratory tool, we highlighted previously unsuspected drivers of the fluorescence signal within polynyas. CDP shows clear differences in biological and environmental conditions depending on topographic features with higher fluorescence in warmer and saltier waters on the shelf compared with the continental slope. In SP, near the ice-shelf, a significant fluorescence signal in April below the mixed layer (around 130m depth), was associated with fresher and warmer waters. We hypothesize that this signal could result from potential ice-shelf melting from warm water intrusions onto the shelf leading to iron supply necessary to fuel phytoplankton growth. This study supports that Antarctic coastal polynyas may have a key role for polar ecosystems as biologically active areas throughout the season within the sea-ice region despite inter and intra-polynya differences in environmental conditions
Unraveling the thermohaline structure of the Southern Ocean using functional data analysis
The Southern Ocean connects the Indian, Pacific and Atlantic Oceans and provides a direct pathway to exchange mass, heat and salt across the Global Ocean, therefore playing an important role in the global climate system. Due to the complexity of its structure and the general inadequacy of its sampling, both in time and space, it remains a challenge to describe and visualize the three dimensional pattern of its circulation and the associated tracer distribution (temperature, salinity, oxygen or nutrients). This thesis contributes to the understanding of the thermohaline structure of the ocean and especially of the remote Southern Ocean by introducing a novel decomposition method, the Functional Principal Component Analysis applied on vertical profiles of temperature and salinity. To this end, we first normalize hydrographic profiles by using a functional spline representation. Then the statistical method of dimension reduction and feature extraction reveals the main spatial patterns of the temperature and salinity variations. The first two vertical modes contribute to 90% of the combined variance and are related to very robust structures of the Global Ocean. The first mode is mainly controlled by temperature and the second by salinity. In the Southern Ocean, the vertical modes present circumpolar patterns that can be closely related to the stratification regimes that define the circumpolar fronts. Notably the Polar Front is located at the natural boundary between the region controlled by the first (thermal) mode to the north and the second (haline) mode to the south. A mapping of the fundamental zonation is provided with an estimate of the width of the water mass boundaries. As a validation of this method, the Antarctic Polar Front is investigated further in the Indian sector using the same statistical framework. We show that the Polar Front latitudinal position varies seasonally upstream of the Kerguelen Plateau. This meandering is confirmed by hydrographic data gathered by elephant seals equipped with miniaturized sensors. The proposed statistical method provides an objective way to define water mass boundaries and their spatial variability. It offers a useful framework for representing the density structure of the ocean in a reduced-dimension space while maximizing the variance explained. The functional approach also provides a robust way to validate model outputs against observations from any platforms.At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.</p
Impact of Thermohaline Variability on Sea Level Changes in the Southern Ocean
International audienceThe Southern Ocean is responsible for the majority of the global oceanic heat uptake that contributes to global sea level rise. At the same time, ocean temperatures do not change at the same rate in all regions and sea level variability is also affected by changes in salinity. This study investigates 10 years of steric height variability (2008-2017) in the Southern Ocean (30°S to 70°S) by analyzing temperature and salinity variations obtained from the GLORYS-031 model provided by the European Copernicus Marine Environment Monitoring Service. The thermohaline variability is decomposed into thermohaline modes using a functional Principal Component Analysis. Thermohaline modes provide a natural basis to decompose the joint temperature-salinity vertical profiles into a sum of vertical modes weighted by their respective principal components that can be related to steric height. Interannual steric height trends are found to differ significantly between subtropical and subpolar regions, simultaneously with a shift from a thermohaline stratification dominated by the first "thermal" mode in the north to the second 'saline' mode in the South. The Polar Front appears as a natural boundary between the two regions, where steric height variations are minimized. Despite higher melt rates and atmospheric temperatures, steric height in Antarctic waters (0-2,000 m) has dropped since 2008 due to higher salt content in the surface and upper intermediate layer and partially colder waters, while subtropical waters farther north have mostly risen due to increased heat storage
Impact of Thermohaline Variability on Sea Level Changes in the Southern Ocean
International audienceThe Southern Ocean is responsible for the majority of the global oceanic heat uptake that contributes to global sea level rise. At the same time, ocean temperatures do not change at the same rate in all regions and sea level variability is also affected by changes in salinity. This study investigates 10 years of steric height variability (2008-2017) in the Southern Ocean (30°S to 70°S) by analyzing temperature and salinity variations obtained from the GLORYS-031 model provided by the European Copernicus Marine Environment Monitoring Service. The thermohaline variability is decomposed into thermohaline modes using a functional Principal Component Analysis. Thermohaline modes provide a natural basis to decompose the joint temperature-salinity vertical profiles into a sum of vertical modes weighted by their respective principal components that can be related to steric height. Interannual steric height trends are found to differ significantly between subtropical and subpolar regions, simultaneously with a shift from a thermohaline stratification dominated by the first "thermal" mode in the north to the second 'saline' mode in the South. The Polar Front appears as a natural boundary between the two regions, where steric height variations are minimized. Despite higher melt rates and atmospheric temperatures, steric height in Antarctic waters (0-2,000 m) has dropped since 2008 due to higher salt content in the surface and upper intermediate layer and partially colder waters, while subtropical waters farther north have mostly risen due to increased heat storage
Impact of Thermohaline Variability on Sea Level Changes in the Southern Ocean
International audienceThe Southern Ocean is responsible for the majority of the global oceanic heat uptake that contributes to global sea level rise. At the same time, ocean temperatures do not change at the same rate in all regions and sea level variability is also affected by changes in salinity. This study investigates 10 years of steric height variability (2008-2017) in the Southern Ocean (30°S to 70°S) by analyzing temperature and salinity variations obtained from the GLORYS-031 model provided by the European Copernicus Marine Environment Monitoring Service. The thermohaline variability is decomposed into thermohaline modes using a functional Principal Component Analysis. Thermohaline modes provide a natural basis to decompose the joint temperature-salinity vertical profiles into a sum of vertical modes weighted by their respective principal components that can be related to steric height. Interannual steric height trends are found to differ significantly between subtropical and subpolar regions, simultaneously with a shift from a thermohaline stratification dominated by the first "thermal" mode in the north to the second 'saline' mode in the South. The Polar Front appears as a natural boundary between the two regions, where steric height variations are minimized. Despite higher melt rates and atmospheric temperatures, steric height in Antarctic waters (0-2,000 m) has dropped since 2008 due to higher salt content in the surface and upper intermediate layer and partially colder waters, while subtropical waters farther north have mostly risen due to increased heat storage
A Linear Decomposition of the Southern Ocean Thermohaline Structure
International audienc
Impact of Thermohaline Variability on Sea Level Changes in the Southern Ocean
International audienceThe Southern Ocean is responsible for the majority of the global oceanic heat uptake that contributes to global sea level rise. At the same time, ocean temperatures do not change at the same rate in all regions and sea level variability is also affected by changes in salinity. This study investigates 10 years of steric height variability (2008-2017) in the Southern Ocean (30°S to 70°S) by analyzing temperature and salinity variations obtained from the GLORYS-031 model provided by the European Copernicus Marine Environment Monitoring Service. The thermohaline variability is decomposed into thermohaline modes using a functional Principal Component Analysis. Thermohaline modes provide a natural basis to decompose the joint temperature-salinity vertical profiles into a sum of vertical modes weighted by their respective principal components that can be related to steric height. Interannual steric height trends are found to differ significantly between subtropical and subpolar regions, simultaneously with a shift from a thermohaline stratification dominated by the first "thermal" mode in the north to the second 'saline' mode in the South. The Polar Front appears as a natural boundary between the two regions, where steric height variations are minimized. Despite higher melt rates and atmospheric temperatures, steric height in Antarctic waters (0-2,000 m) has dropped since 2008 due to higher salt content in the surface and upper intermediate layer and partially colder waters, while subtropical waters farther north have mostly risen due to increased heat storage
Seasonal Variation of the Antarctic Slope Front Occurrence and Position Estimated from an Interpolated Hydrographic Climatology
International audienceThe Antarctic Slope Front (ASF) is a fundamental feature of the subpolar Southern Ocean that is still poorly observed. In this study we build a statistical climatology of the temperature and salinity fields of the upper 380 m of the Antarctic margin. We use a comprehensive compilation of observational datasets including the profiles gathered by instrumented marine mammals. The mapping method consists first of a decomposition in vertical modes of the combined temperature and salinity profiles. Then the resulting principal components are optimally interpolated on a regular grid and the monthly climatological profiles are reconstructed, providing a physically plausible representation of the ocean. The ASF is located with a contour method and a gradient method applied on the temperature field, two complementary approaches that provide a complete view of the ASF structure. The front extends from the Amundsen Sea to the eastern Weddell Sea and closely tracks the continental shelf break. It is associated with a sharp temperature gradient that is stronger in winter and weaker in summer. The emergence of the front in the Amundsen and Bellingshausen sectors appears to be seasonally variable (slightly more westward in winter than in summer). Investigation of the density gradients across the shelf break indicates a winter slowdown of the baroclinic component of the Antarctic Slope Current at the near surface, in contrast with the seasonal variability of the temperature gradient
Southern Ocean Ice-Covered Eddy Properties From Satellite Altimetry
International audienceWe investigate statistical properties of surface currents as well as coherent mesoscale eddies in the seasonally ice-covered Southern Ocean. Based on a recent regional Sea Level Anomaly satellite altimetry data set, we compute Eddy Kinetic Energy (EKE) and detect mesoscale eddies. EKE is about one order of magnitude higher in the northern sector of the subpolar basin and over the continental slope, as compared to the middle of the subpolar gyres. An eddy detection methodology reveals that eddies are distributed evenly in the subpolar Southern Ocean, and their amplitude follows the spatial pattern of EKE. In addition to regional circulation variations, sea ice concentration arises as an important driver of eddy properties. Eddies have low amplitude and density in the pack ice, in particular in the middle of the gyres where the background circulation is unfavorable for instabilities. In contrast, the northern part of the Marginal Ice Zone is favorable for mesoscale eddies, especially cyclonic. There, eddies are stronger and their density is higher than in any other region of the ice-covered or ice-free subpolar Southern Ocean. This region is expected to be a site of frontogenesis due to sea ice melt and upwelling generated from interactions between the wind and the sea ice. While many mesoscale eddies will fall below detection level due to the small Rossby radius at high latitudes, these results contribute to understanding the interactions between mesoscale eddies, sea ice, and the background circulation in the subpolar region