2 research outputs found

    6‑Alkoxy-5-aryl-3-pyridinecarboxamides, a New Series of Bioavailable Cannabinoid Receptor Type 1 (CB1) Antagonists Including Peripherally Selective Compounds

    No full text
    We identified 6-alkoxy-5-aryl-3-pyridinecarboxamides as potent CB1 receptor antagonists with high selectivity over CB2 receptors. The series was optimized to reduce lipophilicity compared to rimonabant to achieve peripherally active molecules with minimal central effects. Several compounds that showed high plasma exposures in rats were evaluated in vivo to probe the contribution of central vs peripheral CB1 agonism to metabolic improvement. Both rimonabant and <b>14g</b>, a potent brain penetrant CB1 receptor antagonist, significantly reduced the rate of body weight gain. However, <b>14h</b>, a molecule with markedly reduced brain exposure, had no significant effect on body weight. PK studies confirmed similarly high exposure of both <b>14h</b> and <b>14g</b> in the periphery but 10-fold lower exposure in the brain for <b>14h</b>. On the basis of these data, which are consistent with reported effects in tissue-specific CB1 receptor KO mice, we conclude that the metabolic benefits of CB1 receptor antagonists are primarily centrally mediated as originally believed

    5‑(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)­pyridin-2-amine (PQR309), a Potent, Brain-Penetrant, Orally Bioavailable, Pan-Class I PI3K/mTOR Inhibitor as Clinical Candidate in Oncology

    No full text
    Phosphoinositide 3-kinase (PI3K) is deregulated in a wide variety of human tumors and triggers activation of protein kinase B (PKB/Akt) and mammalian target of rapamycin (mTOR). Here we describe the preclinical characterization of compound <b>1</b> (PQR309, bimiralisib), a potent 4,6-dimorpholino-1,3,5-triazine-based pan-class I PI3K inhibitor, which targets mTOR kinase in a balanced fashion at higher concentrations. No off-target interactions were detected for <b>1</b> in a wide panel of protein kinase, enzyme, and receptor ligand assays. Moreover, <b>1</b> did not bind tubulin, which was observed for the structurally related <b>4</b> (BKM120, buparlisib). Compound <b>1</b> is orally available, crosses the blood–brain barrier, and displayed favorable pharmacokinetic parameters in mice, rats, and dogs. Compound <b>1</b> demonstrated efficiency in inhibiting proliferation in tumor cell lines and a rat xenograft model. This, together with the compound’s safety profile, identifies <b>1</b> as a clinical candidate with a broad application range in oncology, including treatment of brain tumors or CNS metastasis. Compound <b>1</b> is currently in phase II clinical trials for advanced solid tumors and refractory lymphoma
    corecore